Paper 2024/380

Collision Resistance from Multi-Collision Resistance for all Constant Parameters

Jan Buzek, University of Washington
Stefano Tessaro, University of Washington
Abstract

A $t$-multi-collision-resistant hash function ($t$-MCRH) is a family of shrinking functions for which it is computationally hard to find $t$ distinct inputs mapping to the same output for a function sampled from this family. Several works have shown that $t$-MCRHs are sufficient for many of the applications of collision-resistant hash functions (CRHs), which correspond to the special case of $t = 2$. An important question is hence whether $t$-MCRHs for $t > 2$ are fundamentally weaker objects than CRHs. As a first step towards resolving this question, Rothblum and Vasudevan (CRYPTO '22) recently gave non-black-box constructions of infinitely-often secure CRHs from $t$-MCRHs for $t \in \{3,4\}$ assuming the MCRH is sufficiently shrinking. Earlier on, Komargodski and Yogev (CRYPTO '18) also showed that $t$-MCRHs for any constant $t$ imply the weaker notion of a distributional CRH. In this paper, we remove the limitations of prior works, and completely resolve the question of the power of $t$-MCRHs for constant $t$ in the infinitely-often regime, showing that the existence of such a function family always implies the existence of an infinitely-often secure CRH. As in the works mentioned above, our construction is non-blackbox and non-constructive. We further give a new domain extension result for MCRHs that enables us to show that the underlying MCRH need only have arbitrarily small linear shrinkage (mapping $(1 + \epsilon)n$ bits to $n$ bits for any fixed $\epsilon > 0$) to imply the existence of CRHs.

Metadata
Available format(s)
PDF
Category
Foundations
Publication info
Published by the IACR in CRYPTO 2024
DOI
10.1007/978-3-031-68388-6_15
Keywords
Hash FunctionsMulti-collision Resistance
Contact author(s)
jan buzek123 @ gmail com
tessaro @ cs washington edu
History
2024-09-10: revised
2024-02-29: received
See all versions
Short URL
https://ia.cr/2024/380
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2024/380,
      author = {Jan Buzek and Stefano Tessaro},
      title = {Collision Resistance from Multi-Collision Resistance for all Constant Parameters},
      howpublished = {Cryptology {ePrint} Archive, Paper 2024/380},
      year = {2024},
      doi = {10.1007/978-3-031-68388-6_15},
      url = {https://eprint.iacr.org/2024/380}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.