
Collision Resistance from Multi-Collision
Resistance for all Constant Parameters

Jan Buzek and Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, WA, USA

jan.buzek123@gmail.com, tessaro@cs.washington.edu

Abstract. A t-multi-collision-resistant hash function (t-MCRH) is a
family of shrinking functions for which it is computationally hard to
find t distinct inputs mapping to the same output for a function sampled
from this family. Several works have shown that t-MCRHs are sufficient
for many of the applications of collision-resistant hash functions (CRHs),
which correspond to the special case of t = 2.

An important question is hence whether t-MCRHs for t > 2 are funda-
mentally weaker objects than CRHs. As a first step towards resolving this
question, Rothblum and Vasudevan (CRYPTO ’22) recently gave non-
black-box constructions of infinitely-often secure CRHs from t-MCRHs
for t ∈ {3, 4} assuming the MCRH is sufficiently shrinking. Earlier on,
Komargodski and Yogev (CRYPTO ’18) also showed that t-MCRHs for
any constant t imply the weaker notion of a distributional CRH.

In this paper, we remove the limitations of prior works, and completely
resolve the question of the power of t-MCRHs for constant t in the
infinitely-often regime, showing that the existence of such a function
family always implies the existence of an infinitely-often secure CRH. As
in the works mentioned above, our construction is non-blackbox and non-
constructive. We further give a new domain extension result for MCRHs
that enables us to show that the underlying MCRH need only have ar-
bitrarily small linear shrinkage (mapping (1 + ϵ)n bits to n bits for any
fixed ϵ > 0) to imply the existence of CRHs.

1 Introduction

Hash functions are central primitives in cryptography. They are meant to satisfy
a number of different security requirements, but the by far most widespread
requirement is that of collision resistance. Informally, a collision-resistant hash
function family (or CRH, for short) is a family of shrinking functions in which
it is hard to find two inputs mapping to the same output (i.e. a collision) for a
randomly selected function from the family.

While CRHs are widely regarded as belonging to symmetric cryptography
(i.e., they are considered to be part of Minicrypt in the sense of Impagaliazzo’s
five worlds), we do not know how build them from one-way functions (OWFs). In
fact, a black-box separation between the notions was proved by Simon [Sim98].

https://orcid.org/0009-0008-7067-7806
https://orcid.org/0000-0002-3751-8546

This is a sharp contrast to most other symmetric cryptographic primitives, in-
cluding pseudorandom generators [HILL99], pseudorandom functions [GGM84],
and secret-key encryption —all of these enjoy black-box constructions from one-
way functions.

Multi-collision resistance.The above context naturally motivates the study
of notions that are potentially between OWFs and CRHs in order to better un-
derstand their relation. A number of papers [KNY18,BDRV18,BKP18,KY18]
proposed to study multi-collision resistance (MCRH) as such a notion. (The no-
tion had previously been considered in a cryptanalytics context, see e.g. [Jou04].)
Informally, a t-MCRH is a family of shrinking functions for which it is hard to
find a size t collision, i.e., t distinct inputs mapping to the same output. When
the amount of shrinkage plays an important role, we specify the shrinkage pa-
rameter k, where a (t, k)-MCRH is a family of functions mapping kn bits to n
bits.

One expects that the notion of a (t, k)-MCRH could become weaker as t in-
creases (because any adversary is required to find larger collisions), and stronger
as k increases (because the functions must be more shrinking). In general, t and
k can be unbounded functions of the security parameter n, as long as they are at
most polynomial. A 2-MCRH is simply a CRH. In this case, shrinkage is less rel-
evant, since there are well-known domain extension techniques [Mer91,Dam90],
i.e., the existence of a CRH shrinking only a single bit can be used to construct a
CRH with arbitrary (polynomial) shrinkage. In contrast, such a strong result is
not known for t-MCRH for t > 2. A nontrivial result that improves the shrinkage
of a t-MCRH at the cost of increasing t is described in [BKP18].

Does multi-collision resistance imply collision resistance? A rele-
vant question in view of the above is therefore whether MCRHs are actually
weaker objects than CRHs. As a first step in this direction, Komargodski and
Yogev [KY18] showed that any t-MCRH for constant t implies a distributional
CRH with infinitely-often security. Infinitely-often security means an adversary
fails for infinitely many values of the security parameter n, instead of failing for
all values that are sufficiently large. Distributional CRHs are however weaker ob-
jects than standard CRHs, and this result still left open the question of whether
full-fledged CRHs can also be built.

Recently, Rothblum and Vasudevan [RV22] made a first step in this direction
by providing constructions of infinitely-often secure CRHs (for short, io-CRHs)
from io-(t, k)-MCRHs (and hence from (t, k)-MCRHs). Their techniques inher-
ently require either t = 3 and k ≈ 2, or t = 4 and k ≈ 6 1.

This leaves therefore the following question open:

Can we build io-CRHs from io-(t, k)-MCRHs for any2 values of t and k?

1 They generalize their approach to construct t′-MCRH from t-MCRH with t > 4
for certain values t′ < t (see [RV22, Theorem 5]). However, there is no sequence
of parameters which would allow them to use this to construct an io-CRH from a
t-MCRH with t > 4.

2 For extremely small values of k or large values of t this may be impossible; see the
note following Definition 1.

2

We answer this question affirmatively for any constant t and any constant k >
1. Our construction, like those given by [KY18,RV22], is non-black-box and
non-uniform (alternatively, our construction is uniform if we consider security
against uniform adversaries.) An additional benefit of our construction is that
it is simpler than prior works, while following their general blueprint.

1.1 Our Results

We now overview our results in greater detail. Below, in Section 1.2, we give a
technical overview. Our main result is the following theorem.

Theorem 1. For any constants t and ϵ > 0, if an io-(t, 1 + ϵ)-MCRH exists,
then an io-CRH exists.

We note that this theorem implicitly contains two statements: First, the
equivalence of io-t-MCRHs for various constant values of t; second, the equiva-
lence of io-(t, k)-MCRHs for fixed t and various constant values of k > 1. Indeed,
our proof of the theorem consists of combining two transformations, which we
discuss separately.

Improving multi-collision resistance.The first transformation is our main
technical result, and is the part of our proof that is non-constructive and non-
blackbox. In particular we prove the following theorem.

Theorem 2. For any constant c, equal to a power of two, there exists a constant

c2 such that if an io-
(
2c/2, c+ c2

log(n)
n

)
-MCRH exists, then an io-CRH exists.

This theorem is a substantial improvement over prior results, as iterating it
allows us to construct an io-CRH starting from an io-t-MCRH for any constant t,
by choosing the appropriate c, as long as it is sufficiently shrinking, whereas the
technique from [RV22] only allows us to start from t ∈ {3, 4} and that of [KY18]
only constructs distributional io-CRHs. Our proof technique is inspired by those
from [KY18,RV22], but is in some sense simpler, in that we do not rely on any
sophisticated combinatorial tools.

Still, as in [KY18,RV22], our construction internally uses an adversary, and
therefore if we target security against non-uniform adversaries (which we do in
this paper), our construction is also non-uniform. (If we instead use uniform
adversaries, the construction would also be uniform.) It is an interesting open
question whether a blackbox proof of Theorem 1 is possible. Previously a black-
box separation between various MCRH notions of was claimed [KNY18], but, as
mentioned in [RV22], there is a gap in the proof [Per], and such a separation is
not currently known.

Removing the “infinitely often” restrictions is also an interesting problem,
although, in a pragmatic sense, io-CRHs appear nearly as strong CRHs. For
most constructions, it is uncommon for adversaries to only fail on infinitely
many security parameters as opposed to all sufficiently large ones.

3

Domain extension. We complement the above result with a new a domain
extension result for MCRHs, which can be combined with the above theorem to
reach a CRH starting with any linearly shrinking t-MCRH with constant t. Al-
though some domain extension results for MCRHs are already known [BKP18],
they can only be used to construct t-MCRHs with superconstant t, even when
starting from a 3-MCRH. Such transformations cannot be used with Theorem 2
to prove Theorem 1.

This second transformation is a black-box construction of a family of hash
functions with larger domain from a given MCRH. We prove the following the-
orem.

Theorem 3 (Domain Extension for MCRH). Given a (t, 2)-MCRH for
constant t, for any constant λ there exists a (t′, λ)-MCRH for t′ = 2tlog(λ)+2.
The same holds when both the starting and ending MCRH are merely infinitely
often secure.

The key point in the above theorem is the O(log(λ)) dependency in the
exponent of t′, which allows us to combine this with Theorem 2 and get functions
with both improved collision resistance and improved shrinkage compared to
our starting MCRH. Our proof of this result uses hash trees and a form of list
recoverable code; see the next section for details.

1.2 Technical Overview

In this section, we give a more detailed overview of the proofs of the two main
transformations described above.

Prior approach. It is helpful to first start with an overview of the transforma-
tion proposed by Rothblum and Vasudevan [RV22], as it will serve as a starting
point for our approach. For simplicity let us start with a (3, k)-MCRH, which
we now want to transform into a CRH. The key idea is to define a new family
which contains functions of form

fg,h(x) = (h(x), g(x)) ,

where h : {0, 1}kn → {0, 1}n is sampled from the 3-MCRH, and g : {0, 1}kn →
{0, 1}ℓ is such that n+ ℓ < k ·n, and sampled from a different function family G
as explained below.

Now, should this new family be a CRH, then we are done. However, if is
not, then there exists an adversary A which, given g, h, finds a collision for fg,h.
Here, let us just assume that the adversary is perfect, i.e., A(g, h) = (x1, x2)
such that x1 ̸= x2, g(x1) = g(x2), and h(x1) = h(x2). Now, we are going to use
A to define a new function family sampling functions fA,h : G → {0, 1}n

fA,h(g) = h(x1) ,

where (x1, x2) = A(g, h). We choose G sufficiently large such that this function
is also shrinking, and try to argue that it must be a CRH. Now, if we are given

4

a collision g1 ̸= g2 for fA,h, it means that

h(x11) = h(x12) = h(x21) = h(x22)

for A(g1, h) = (x11, x12) and A(g2, h) = (x21, x22). Further, we know that x11 ̸=
x12 and x21 ̸= x22, as well as g1(x11) = g1(x12) and g2(x21) = g2(x22).

This does not mean yet that we have a 3-collision for h. In the worst case,
we could have {x11, x12} = {x21, x22}. This is exactly what g is meant to pre-
vent. For example, in this case one can relatively easily build a function fam-
ily where g : {0, 1}kn → {0, 1}kn/2 such that for any x, y ∈ {0, 1}kn and any
g1 ̸= g2, we cannot have g1(x) = g1(y) and g2(x) = g2(y). This implies that
|{x11, x12, x21, x22}| ≥ 3.

There are now two immediate challenges. The first one is that A is only
required to work on infinitely many values of the security parameter n. To over-
come this, the idea is to instead prove that the resulting hash function is just an
io-CRH, thus ensuring that A works on all sufficiently large values of the security
parameter. The second assumption of adversaries succeeding with probability 1
is circumvented by a combination of a technical lemma (which we re-state as
Lemma 1) from [RV22] and further arguments. Of course, an even bigger chal-
lenge is to understand how far this approach can be pushed beyond 3-collisions.

How far can we push this?More abstractly, the role of the function g is to
‘split up’ collisions so that small collisions in the resulting hash function fA,g

can be used to reconstruct large ones in h. Intuitively, one should think in the
ideal case of g(x) as being truly random, and independent of the actual found
collisions, but this is of course not achievable. Therefore, we are required to use
combinatorial properties of g, and to this end, [RV22] use a variant of Reed
Solomon codes, but this ends up making g(x) too long, and no longer yields
shrinking functions when t > 4. Interestingly, [KY18] circumvents this issue by
producing a distributional CRH (dCRH, for short). To break the security of a
dCRH, an adversary must produce random collisions, which allows [KY18] to use
the adversary’s randomness in lieu of g(x) in a clever way, allowing the reduction
to succeed for higher initial values of t. However, the resulting dCRH primitive
is not as strong as a CRH.

Our approach.While we adopt the same general blueprint as [RV22], we take
a different angle which leads to a much simpler and more powerful building
block. Concretely, we now start with a an io-(t2, k)-MCRH family, which we are
going to use to build an io-(t, k/2)-MCRH family.3 We first define a new function
family which samples functions hs described by h from our original family, along
with a string s ∈ {0, 1}kn/2, such that

fh,s(x) = h(s ∥ x) .

Critically, hs has half the shrinkage of h. The argument now is rather simple
(in fact, simpler than in [RV22]). Either this function is already a (t, k/2)-

3 For technical reasons, our resulting MCRH has slightly smaller shrinkage; we ignore
this in the high level discussion.

5

MCRH. If not, assume that we have an adversary A which finds a t-multi-
collision for fh,s, and assume it is perfect and deterministic, i.e., A(h, s) returns
a multi-collision x1, . . . , xt. Then, we build a new function

fA,h(s) = h(s ∥ x1) ,

where x1 is a canonical element chosen from the multi-collision output by A on
input (h, s). The function fA,s also has half the shrinkage of h.

Then, if an adversary finds a t-multi-collision for fA,h, it means we have ob-
tained distinct s1, . . . , st for which the h(si ∥ xi,j) collide, where (xi,1, . . . , xi,t) =
A(h, s) is the t-multi-collision A finds for fh,s. This means that we have found
a t2-multi-collision for h, since the si ∥ xi,j ’s are all distinct.

Once again, this requires further technical arguments due to the fact that A
only succeeds on a non-negligible fraction of the inputs h, s. To achieve this, we
generalize the arguments from [RV22] to show that we can transform the MCRH
defined from A to one that has a non-negligible fraction of h which work for all
inputs s. From there, the transformation to a full MCRH follows from the lemma
from [RV22]. Note that this second transformation causes a small, subconstant
loss in shrinkage, which is handled in the formal proof.

Improving the shrinkage. The above construction transforms an io-(t2, k)-
MCRH into an io-(t, k/2)-MCRH. This means that we can iterate this a constant

number of times, getting a CRH from any io-(22
ℓ

, 2ℓ(1 + ϵ))-MCRH. However,
what if we have a function with less shrinkage to start with? We resolve this by
revisiting the question of domain extension of MCRHs.

More specifically, our domain extension transformation works in two stages.
The main stage is a construction of a much more shrinking (io)-MCRH starting
from one mapping 2n bits to n bits, where we prove a strong result about the
worsening of the collision resistance properties. Let h be a function from an io-
(t, 2)-MCRH family. We build a function h′ mapping λn bits to n bits from h.
The new function h′ works by first encoding its input into ln bits for l > λ, and
then using h in a hash tree construction to hash down to an n bit output.

Using a hash tree alone, the resulting function could have collisions of size
growing exponentially in l, because each application of h may have t − 1 size
collisions. However, any large collisions in the hash tree take on only a few
distinct values on any particular block of the input. This is because all the
distinct values in a length 2n block of the input must be mapped to the same
value by O(log(l)) applications of h, so the size of any colliding set cannot be
larger than (t− 1)O(log(l)). This intuition is formalized in Proposition 3.

Now, for h to be suitably multi-collision resistant it suffices for the encod-
ing used in h′ to avoid having a large intersection with any sets taking only
few values in each 2n-bit block (we refer to this property as rectangle-freeness).
This combinatorial property, which is tightly connected with list-recoverability
in codes, is satisfied by a purely random function from λn bits to ln bits for
l = 4λ with high probability. Since our construction cannot use a purely random
function due to its large description, we prove our construction in the setting of

6

limited independence. Specifically, we will show that the same holds for a func-
tion chosen randomly from a set of merely K-wise independent hash functions,
for a suitable constant K. We will also discuss how folded Reed Solomon codes
can be used in the place of a K-wise independent function family.

Our construction is similar to [BKP18] in the general idea of using a code
followed by a hash tree. However, the analysis in [BKP18] results in too much
of an increase in t for our purposes. In particular, even starting from a t-MCRH
with constant t, the resulting construction is only provably a t′-MCRH with t′

growing with n, and thus cannot be combined with our main transformation.
Additionally, we believe our construction and analysis is more natural, showing
that the requirements on the code, which in [BKP18] were presented as a highly
specialized definition for the specific construction, are achieved by a K-wise
independent function family. Finally, the construction in [BKP18] is interwoven
in the construction of commitment schemes, the main focus of that work, whereas
our construction extracts the core of the domain extension argument.

1.3 Organization

The rest of this paper is organized as follows. The next section gives various defi-
nitions necessary for the formal discussion. Section 3 gives the main construction
improving collision resistance, and the core of the proof of Theorem 2. Section 4
gives the proof of Theorem 3 and our domain extension results. Section 5 com-
bines the transformations improving collision resistance and shrinkage together,
completing the proof of Theorem 1. Section 6 is dedicated to transforming a
weakly partial domain MCRH (see Definition 3) to a full MCRH. This is a tech-
nical result needed to complete the proof of Theorem 2; it is given separately
because it may be of independent interest in similar proofs.

2 Definitions

In this section we present relevant definitions for hash functions, as well as more
technical notions and facts that will serve as intermediate steps in our proofs.

General notation.Throughout this paper, we let ∥ denote string concatena-
tion. We use [n] to denote {1, 2, ..., n}. All logarithms are in base 2. For a set
C ⊂ X and a function f : X → Y , we use f(C) to denote the corresponding
image {y ∈ Y : ∃x ∈ C : f(x) = y}. For a randomized algorithm A with input
y we write x ← A(y) to denote a random sample from A on input y. We use
negl(n) to generically refer to a positive function f : N→ R which is negligible,
that is, eventually smaller than any inverse polynomial function 1/p(n).

Function families. We describe a function family via a probabilistic family
of polynomial size circuits Gen, referred to as the function family generator. On
input the security parameter 1n, Gen outputs the description of a function h,
typically as a circuit. (We will use h to refer both to the function and the circuit
implementing it.) We will let Gen be both non-uniform or uniform, depending
on the context. (We elaborate on this a bit further below.)

7

Multi-collision resistance. For a an integer t, a function h, and a subset
C of the domain of h, we define the predicate MCOLLh,t(C) which is true if and
only if |C| = t and for all x, x′ ∈ C, we have h(x) = h(x′), i.e., C describes a
t-multi-collision under the function h.

Definition 1 (MCRH [KNY18,RV22]). For functions t(n) and k(n), a (t, k)-
multi-collision resistant hash function (for short, (t, k)-MCRH) is described by
a generator Gen which, on input 1n, outputs the description of a function h :
{0, 1}k(n)·n → {0, 1}n such that for any family of polynomially sized circuits
(An)n∈N, every polynomial p(n), and for all n ∈ N sufficiently large,

Pr
h←Gen(1n)

[
MCOLLh,t(C)

∣∣∣ C ← An(h)
]
≤ 1

p(n)
.

An io-(t, k)-MCRH only requires the above to hold for an infinite sequence of
security parameters n ∈ N.

For an MCRH to be nontrivial, it is necessary for it to be sufficiently shrink-
ing so that the existence of size t-collisions is guaranteed. In particular, if the
MCRH’s output is l bits shorter than its input, t must be larger than 2l for the
notion to be nontrivial. We are primarily interested in the case where the MCRH
shrinks its input to a fraction of its original length (corresponding to constant
k > 1), in which case exponential size collisions are guaranteed to exist.

When k is not specified and a t-MCRH is mentioned, it is assumed to be a
sufficiently large constant. A CRH is any shrinking 2-MCRH. There are well-
known transformations of a (io-)CRH shrinking one bit to one with arbitrary
polynomial shrinkage, so we do not need to specify the shrinkage when discussing
(io-)CRH.

Uniformity.Our results hold in both the non-uniform and uniform computa-
tional settings. In the uniform setting, MCRHs are given by PPT (Probabilistic
Polynomial Time) generator algorithms Gen, and we model the adversaries as
uniform (PPT) algorithms. At a high level, because we use adversaries codes’
to define MCRH as part of our proofs, we do not consider the setting of uni-
form MCRH secure against non-uniform adversaries. In the non-uniform setting,
MCRH are given by probabilistic polynomial sized circuit families as formalized
above, and the adversaries are also modeled by such circuit families. Throughout
the paper we formalize our results in the non-uniform setting.

Weaker forms of MCRHs.The following definitions are weaker forms of the
MCRH definition, which we will use to construct fully-fledged MCRH. The first
one is from [RV22], whereas the latter is new.

Definition 2 (Partial MCRH ([RV22] Definition 6)). For functions t(n)
and k(n), a partial (t, k)-MCRH is described by a generator Gen which, on input
1n, outputs the description of a function h : {0, 1}k(n)·n → ({0, 1}n ∪ {⊥}) such
that:

8

1. For any family of polynomially sized circuits (An)n∈N, every polynomial p(n),
for all sufficiently large n ∈ N,

Pr
h←Gen(1n)

[MCOLLh,t(C) ∧ ⊥ /∈ h(C) | C ← An(h)] ≤
1

p(n)

2. There is a polynomial q such that with all but negligible probability of the
outputs of Gen(1n),

|{x ∈ {0, 1}n : h(x) ̸= ⊥}| ≥ 2n

q(n)
.

In an partial io-(t, k)-MCRH the first condition above needs to hold only for an
infinite sequence of security parameters n ∈ N; the second is still required to hold
for all security parameters.

We will use the following lemma rephrased from [RV22] that shows how to
transform a partial domain MCRH to a full MCRH.

Lemma 1 (Partial to Full MCRH ([RV22] Lemma 7 Restated)). If there

exists a partial (t, k)-MCRH then there exists a (t, k − O(log(n)n))-MCRH. The
same holds in the infinitely often case and/or if the construction is uniform.

We will also need the following weakening of Definition 2.

Definition 3 (Weakly Partial MCRH). For functions t(n) and k(n), a weakly
partial (t, k)-MCRH is a described by a generator Gen which, on input 1n, outputs
the description of a function h : {0, 1}k(n)·n → ({0, 1}n ∪ {⊥}) such that:

1. For any family of polynomially sized circuits (An)n∈N and every polynomial
p(n), for all sufficiently large n ∈ N,

Pr
h←Gen(1n)

[MCOLLh,t(C) ∧ ⊥ /∈ h(C) | C ← An(h)] ≤
1

p(n)
.

2. There are polynomials q1(n), q2(n) such that

Pr
h←Gen(1n)

[
|{x ∈ {0, 1}n : h(x) ̸= ⊥}| ≥ 2n

q1(n)

]
≥ 1

q2(n)
.

An weakly partial io-(t, k)-MCRH is the same, except that the first condition
above needs to hold only for an infinite sequence of security parameters n ∈ N;
the second is still required to hold for all security parameters..

In Section 6 we show how to transform any weakly partial (t, k)-MCRH into
a partial (t, k)-MCRH, which can be further transformed into an MCRH using
Lemma 1.

9

K-wise independent hash functions.We will also make use of the standard
notion of K-wise independent hash functions, which exist unconditionally for K
polynomial in n (e.g., by considering random polynomials of degree K − 1).

Definition 4 (K-wise Independent Hash Functions). For a function K(n),
a family of functions described by Gen outputting, on input 1n, a function h :
{0, 1}ℓ(n) → {0, 1}m(n) is K-wise independent if for any n, for any sequence of
K = K(n) distinct inputs x1, . . . , xK ∈ {0, 1}ℓ(n) and any sequence of K (not
necessarily distinct) outputs y1, . . . , yK ∈ {0, 1}m(n), we have

Pr
h←Gen(1n)

[∀i ∈ [K] : h(xi) = yi] =
1

2K(n)·m(n)
.

3 Improving Collision Resistance

This section gives a proof of the following theorem which establishes the existence
of an io-CRH from a suitable io-MCRH, and is our first main result. Later on,
we combine this with domain extension techniques to complete the picture and
show that io-CRHs are implied by any io-(t, k)-MCRHs where t > 2 and k > 1
are constants.

Theorem 2. For any constant c, equal to a power of two, there exists a constant

c2 such that if an io-
(
2c/2, c+ c2

log(n)
n

)
-MCRH exists, then an io-CRH exists.

As in the case of the main construction of [RV22], the proof of this theorem
yields a non-blackbox and non-uniform construction. We also note that, while
we do not do so explicitly, the resulting construction can be made uniform if we
make all security assumptions hold against uniform adversaries. The core of the
proof of Theorem 2 is the following lemma, which gives a way of trading off the
shrinkage and collision-resistance parameters of (io)-MCRHs.

Lemma 2. Let t = t(n) and k = k(n) be functions bounded above by polynomi-

als. If there exists an io-(t2, k)-MCRH, then there exists an io-(t, k
2 − c · log(n)n)-

MCRH for some constant c.

We first assume this lemma, and use it to prove Theorem 2.

Proof (of Theorem 2). We simply apply the lemma above log(c)−1 times. After

i steps, we obtain an io-(2c/2
1+i

, c/2i + (c2 − c3(i)) log(n)/n)-MCRH, where the
constant c3(i) is obtained by summing the constants from Lemma 2. If we set
i = log(c)− 1, then this gives us an io-(2, 2+O(log(n)/n))-MCRH, assuming c2
was chosen to be sufficiently large. Therefore, we get an io-CRH, as we wanted
to show. ⊓⊔

Next we give a proof of Lemma 2. At the end of this section, we also state
some results that follow from applying our techniques to t-MCRHs for super-
constant t = ω(1).

10

3.1 Proof of Lemma 2

Let Gen be the sampler for the io-(t2, k)-MCRH, which samples functions from
kn bits to n bits. We assume without loss of generality that k is even. We set
m = kn/2.

The Gen′ family. For s ∈ {0, 1}m, define fh,s : {0, 1}m → {0, 1}n such that

fh,s(x) = h(x ∥ s) .

Let Gen′ be the sampler that, on input 1n samples h ← Gen(1n) as well as
s← {0, 1}m and returns fh,s.

We now have two cases. Either Gen′ is an io-(t, k/2)-MCRH, and then we
are done. Or it is not. In this case, there exist a polynomial q(n), an integer
n0 = n0(A), and a polynomial-sized family of adversaries A = (An)n∈N such
that

Pr
fh,s←Gen′(1n)

[
MCOLLh,t(C)

∣∣∣ C ← An(fh,s)
]
>

1

q(n)

for all n ≥ n0. Without loss of generality, we patch An so that it outputs either
an ordered t-tuple that forms a collision, or a special symbol ⊥ when it fails.
(Note that An can easily be modified to check if the collision it has found is
valid, and output ⊥ if not.)

The GenA family.Let An(fh,s) be the output of An on input the hash function
fh,s, and let An(fh,s)[1] be the first element of the t-tuple that An(fh,s) outputs,
or ⊥ if An(fh,s) outputs ⊥. We then define the function

gh,An
: {0, 1}m → {0, 1}n

such that

gh,An(s) = fh,s(An(fh,s)[1]) .

Let GenA be a sampler that on input 1n samples h← Gen(1n) and then returns
gh,An . We note that this sampler is not uniform, as the adversary An is assumed
not to be uniform. Furthermore, the function is only well-behaved (in the sense
of our analysis below) for n ≥ n0(A). Consequently, for n < n0(A), we define
gh,An

to be some arbitrary function which is defined on all of its domain.

GenA is a weakly partial MCRH.We now establish that GenA is a weakly
partial io-(t, k/2)-MCRH. We prove that it meets the two parts of the definition
in the propositions below.

Proposition 1. For every polynomial-sized adversaries B = (Bn)n∈N, every
polynomial p(n), and infinitely many values of n, we have

Pr
gh,An←GenA(1n)

[
MCOLLgh,An ,t(C) ∧ ⊥ /∈ gh,An

(C) | C ← Bn(gh,An
)
]
≤ 1

p(n)
.

11

Proof (Of Proposition 1). Assume that the the proposition is not true, i.e., that
there actually exists a polynomial-size adversary B = (Bn)n∈N and a polynomial
p(n) such that

Pr
gh,An←GenA(1n)

[
MCOLLgh,An ,t(C) ∧ ⊥ /∈ gh,An(C) | C ← Bn(gh,An)

]
>

1

p(n)

for all n’s larger than some fixed value n0 = n0(B). We now build a polynomial-
sized adversary B̃ = (B̃n)n∈N against Gen. The adversary is described as follows,
on input a circuit h in the range of Gen(1n):

Adversary B̃n(h):

1. Run Bn(gh,An) to get an output C, which we assume without
loss of generality to consist of t distinct inputs s1, . . . , st,
which may or may not be a multi-collision.

2. For each i ∈ [t], run An(fh,si). If the output is not ⊥, let
(xi,1, ..., xi,t) for i ∈ [t] be the output of An.

3. Output the set C ′ = {si ∥ xi,j | i, j ∈ [t]}.

It is not hard to see that B̃n can be implemented in polynomial size as well, as
long as t is polynomial.

Now, assume n ≥ max{n0(A), n0(B)}. We also observe the following:

– Whenever the output C of Bn(gh,An
) is such that ⊥ /∈ gh,An

(C), then, by
definition, we also have that An(fh,si) = (xi,1, . . . , xi,t) ̸= ⊥ for all i ∈ [t].
Further, for each i ∈ [t], we have h(si ∥ xi,j) = gh,An(si) for all j ∈ [t].

– If additionally C is a multi-collision, i.e., gh,An
(s1) = · · · = gh,An

(st), this
means that h(si ∥ xi,j) is a muticollision for h.

– We have additionally that si ∥ xi,j ̸= si′ ∥ xi′,j′ whenever (i, j) ̸= (i′, j′).
This is because either i ̸= i′, in which case si ̸= si′ , or i = i′, in which case
xi,j ̸= xi,j′ . Therefore, C

′ is a multi-collision among t2 inputs for h.

Using the fact that given h← Gen(1n), directly computing gh,An
to feed it into

Bn within B̃n gives us the same distribution as sampling the latter from GenA,
we also have

Pr
h←Gen(1n)

[
MCOLLh,t(C

′) ∧ ⊥ /∈ h(C ′) | C ′ ← B̃n(h)
]
>

1

p(n)

for all n’s larger than n ≥ max{n0(A), n0(B)}. This contradicts the io-MCRH
assumption on Gen, and hence concludes the proof. ⊓⊔

Proposition 2. With q1(n) = q2(n) = 2q(n), we have

Pr
gh,An←GenA(1n)

[
|{s ∈ {0, 1}m : gh,An

(s) ̸= ⊥}| ≥ 2m

q1(n)

]
≥ 1

q2(n)

for all n.

12

Proof (Of Proposition 2). If n < n0(A), the claim is vacuously true, as we defined
the function on the whole domain. So, let us assume that n ≥ n0(A). We call an
h good if it has the property that

Pr
s←{0,1}m

[
MCOLLh,t(C)

∣∣∣ C ← An(fh,s)
]
≥ 1

2q(n)

Note that the fact that h is good is equivalent to saying that gh,An
is defined on

at least 2m/2q(n) of the inputs s. The probability that an h is good is therefore
at least 1

2q(n) by a Markov-like argument, as if this were not true, the probability

that An succeeds against fh,s would be smaller than 1/q(n), a contradiction to
our assumption on An’s success probability being at least 1/q(n). ⊓⊔

Wrapping this up. It remains to turn GenA into a full MCRH. This will require
some technical work, which is packed in the proof of Lemma 3, which we defer
to Section 6 below. However, the proof of Lemma 2 follows directly from this
claim applied to GenA.

Lemma 3 (Weakly partial to full MCRH). If a weakly partial (t, k)-MCRH

exists, then so does a (t, k−O(log(n)n))-MCRH. The same holds in the infinitely
often case and/or if the construction is uniform.

3.2 t-MCRH for superconstant t

The proof of Theorem 2 cannot be directly extended to show that any io-t-
MCRH, for a growing function t(n) (such as a polynomial), implies an io-CRH.
This is because to prove such a claim, we would want to apply the transformation
O(log(t(n))) times, which is also an unbounded number of times. One could try
to give a direct proof, but it is not clear how to do so, as we require building a
new adversary at every step.

However, Lemma 2 does show that the existence of t-MCRH for any poly-
nomial t(n) is equivalent to the existence of a nϵ-MCRH for any ϵ > 0 fixed
(with sufficiently large shrinkage). This is because starting from the former, if
t(n) is asymptotically bounded by nc, then applying our transformation log(cϵ)
times as in the proof above results in a nϵ-MCRH. Since log(cϵ) is a constant,
this iterative construction does not run in to the problems described above. This
gives us the following corollary of Lemma 2.

Corollary 1. If, for some polynomial t(n), there exists a sufficiently shrinking
io-t-MCRH, then there exists an io-nϵ-MCRH for any constant ϵ > 0.

4 Domain Extension

In this section, we complement our main transformation with one that improves
the shrinkage of a MCRH at the cost of worsening the collision-resistance prop-
erty. The trade-off between the improved shrinkage and worsened collision re-
sistance will however be favorable, in that combining this transformation with

13

Theorem 2 will allow us to significantly weaken the starting shrinkage of the t-
MCRH required to prove existence of a CRH. (We will indeed do so in Section 5
below.) In summary, we are going to prove the following theorem.

Theorem 3 (Domain Extension for MCRH). Given a (t, 2)-MCRH for
constant t, for any constant λ there exists a (t′, λ)-MCRH for t′ = 2tlog(λ)+2.
The same holds when both the starting and ending MCRH are merely infinitely
often secure.

Overview of our proof.Our proof of Theorem 3 follows the high-level ap-
proach originally used in [BKP18] to create commitment schemes from a MCRH.

However, as mentioned in the introduction, there are significant differences.
The primary technical difference is that the domain extension theorems in [BKP18]
produce t′-MCRHs with t′ growing in n, even when starting with a t-MCRH with
constant t. This prevents us from combining such transformations with the tech-
niques from Section 3. Furthermore, we believe that our construction and analy-
sis is more natural, showing that the requirements on the code, which in [BKP18]
were presented as a highly specialized definition for the specific construction, are
actually satisfied by a random, or just K-wise independent, function family, for
a suitable and sufficiently small K.

More concretely, the proof is obtained by combining the results from Sec-
tions 4.1 and 4.2 below. We follow the natural approach of using a hash tree
to build a function with larger domain from a given MCRH. To this end, let
h : {0, 1}2n → {0, 1}n be sampled from our (t, 2)-MCRH. Our hash-tree con-
struction breaks the input into blocks of length 2n, hashes these with h, con-
catenates the outputs and repeats until the result has only n bits. By a standard
argument, if it were hard to find collisions in h, it would be hard to find colli-
sions at each level, and the overall construction would be a CRH. Because h in
sampled from a t-MCRH, however, it may be easy to find (t− 1) size collisions
in h, and the hash tree constructed may itself have exponential size collisions
(relative to the multiplicative domain extension factor). Still, we will observe
that large collisions have a particular structure. Specifically, for each block at a
leaf of the hash tree, the colliding set only takes on a small number of different
values.

The key idea is to take advantage of this structure by restricting the hash
tree to a set of inputs that avoid these large local collisions. Concretely, we define
the new MCRH to compute an encoding from length λn bit strings to length
ln bit strings for λ smaller than but on the same order as l (e.g. λ = l/4), and
then apply the hash tree. If the encoding is sufficiently good at avoiding local
collisions, the resulting function should be a t′-MCRH with much larger domain
and t′ not too much larger than t.

4.1 Local MCRHs from Hash Trees

We first start with the standard definition of a hash tree associated with a
function family with generator Gen.

14

Definition 5 (Hash Tree). Let h : {0, 1}2n → {0, 1}n be a function. For any
depth parameter d ≥ 0, we define

htd,h : {0, 1}2
dn → {0, 1}n

such that ht0,h(x) = x for all x ∈ {0, 1}n, and for all x = xL ∥ xR, where

xL, xR ∈ {0, 1}2
d−1n

htd,h(x) = h(htd−1,h(xL) ∥ htd−1,h(xR)) .

Now, for a constant t, let Gen be a (t, 2)-MCRH. Let d be a constant depth
parameter. We define a new generator GenHT = GenHT [Gen, d] which, on input
1n, runs h ← Gen(1n), and then outputs a circuit implementing htd,h as in
Definition 5. Here, and below, we use the following notation: Let C ⊆ {0, 1}∗ be
a set of strings. Let i ∈ {1, 2, . . .} a non-zero natural number. Then, assuming
all strings in C have length at least 2ni, we define

Ci = {x [2n(i− 1), . . . , 2ni− 1] : x ∈ C}

where x[a, . . . , b] denotes the substring of x including all characters from the a-th
one to the b-th one; the indexing is inclusive of both endpoints, and starts from 0.
In other words, Ci is the projection of the set C on the i-th 2n-bit block of each
string.

The next proposition says that GenHT is locally a good MCRH, meaning it
is hard to find a multi-collision C for which the projection Ci on the i-th 2n-bit
block contains too many values.

Proposition 3 (Local Collisions on Hash Trees). Let d, Gen, and GenHT
be as above. Then, for any polynomial-sized ciruits (An)n∈N and all polynomials
p(n)

Pr
ht←GenHT (1n)

[
MCOLLht,|C|(C) and
∃i ∈ [2d−1] s.t. |Ci| > (t− 1)d

∣∣∣∣ C ← An(ht)

]
≤ 1

p(n)

for all sufficiently large n.

We note that Proposition 3 can be be re-stated for the case where Gen is only
infinitely-often secure, in which case the statement is only true for infinitely many
n’s. The proof remains identical.

Proof. Suppose A = (An)n∈N is such that

Pr
ht←GenHT (1n)

[
MCOLLht,|C|(C) and
∃i ∈ [2d−1] s.t. |Ci| > (t− 1)d

∣∣∣∣ C ← An(ht)

]
>

1

p(n)

for infinitely many n’s.
We are now going to build an adversary B = (Bn)n∈N which breaks the t-

MCRH security of Gen. In particular, Bn, on input h in the support of Gen(1n),
will run An(htd,h), and obtain C. If |htd,h(C)| = 1, i.e., we have t-multi-collision,
and there exists i ∈ [2d−1] such that |Ci| > (t− 1)d, the adversary Bn runs the
following recursive procedure Extract(h, d, C), and returns its output:

15

Procedure Extract(h, d, C):

1. Let i ∈ [2d−1] be smallest such that |Ci| > (t− 1)d

2. Let Yi = {h(x) : x ∈ Ci}
3. If |Yi| ≤ (t− 1)d−1 then

(a) Find y ∈ Yi and Cy ⊆ Ci such that h(x) = y for all
x ∈ Cy and |Cy| = t

(b) Output Cy.
4. If |Yi| > (t− 1)d−1 then

(a) Let

C ′ = {h(x1) ∥ · · · ∥ h(x2d−1) : x1 ∥ · · · ∥ x2d−1 ∈ C} .

(b) Output Extract(h, d− 1, C ′).

It is not too hard to see that the recursive procedure always terminates with a
t-multi-collision for h whenever An wins. (And thus the success probability of
Bn equals that of An.) Indeed, at every iteration there are two cases:

Case 1: |Yi| ≤ (t−1)d−1. Then, by the pigeonhole principle, there exists y ∈ Yi

such that h(x) = y for at least t distinct values in Ci. Then, we output these
t values as a multi-collision, and are done.

Case 2: |Yi| > (t− 1)d−1. Here, we clearly have |htd−1,h(C ′)| = 1, and further,
we must have that |C ′⌈i/2⌉| ≥ |Yi| > (t − 1)d−1. Therefore, we can proceed
recursively.

The execution terminates because if we ever call Extract(h, 1, d), we necessarily
have i = 1, and |Y1| = 1. Therefore, Extract also returns a t-multi-collision in
this case, and thus Bn succeeds whenever An does. We also note that Extract
can be implemented in polynomial time (and by polynomial size circuits) as long
as (t− 1)d is polynomial. This concludes the proof. ⊓⊔

4.2 Rectangle-free Function Families

In this section, we formalize the requirements on functions, which, when com-
bined with a hash tree, yield domain extension for MCRHs, and also construct
such functions. The required combinatorial property is similar to that used by
[BKP18] in the context of building commitment schemes from MCRHs, and es-
sentially can be thought of as a special case of a list-recoverable code [GI01,GS98]
with no efficiency requirements for list recovery. In the following, for two sets
of strings S1 ⊆ {0, 1}m and S2 ⊆ {0, 1}n, it is convenient to define S1 × S2 ⊆
{0, 1}m+n as the set of all strings x ∥ y where x ∈ S1 and y ∈ S2.

Definition 6 (Rectangle). For an even l ≥ 1, we call a set S ⊆ {0, 1}ln
a size-r rectangle if there are sets S1, . . . , Sl/2 ⊂ {0, 1}2n of size r such that
S = S1 × S2 × · · · × Sl/2.

16

Definition 7 (Rectangle-Free Family). Let Gen describe a function family
consisting of functions f : {0, 1}λn → {0, 1}ln. We say that Gen is (λ, l, r, R)-
rectangle free if

Pr
f←Gen(1n)

[∃r−size rectangle S : |Im(f) ∩ S| ≥ R]

and
Pr

f←Gen(1n)
[f is not injective]

are both negligible, where Im(f) denotes the image of f .

Rectangle-free families give domain extension. First we prove that,
when combined with hash trees, rectangle-free function families give a way of
extending the domain of any MCRH. Concretely, for constant t, t′ and k, we
assume we are given:

1. A (t, 2)-MCRH GenH
2. A (λ, l, (t− 1)d, t′)-rectangle-free function family GenF for l = 2d

We define a family GenG , which on input 1n, operates as follows:

– It samples f ← GenF (1
n)

– It samples htd,h ← GenHT [GenH, d](1
n)

– It returns the function g such that

g(x) = htd,h(f(x)) .

We now prove the following proposition.

Proposition 4. GenG as defined above is a (t′, λ)-MCRH.

Proposition 4 also directly extends to the case when GenH is an io-(t, 2)-
MCRH, in which case GenG is an io-(t′, λ)-MCRH.

Proof. Suppose not, and let A = (An)n∈N be an adversary against GenG , i.e.,
there exists a polynomial p such that we have

Pr
g←GenG(1n)

[
MCOLLg,t′(C)

∣∣∣ C ← An(g)
]
>

1

p(n)
.

for infinitely many values n. Let’s fix one such value of n, and denote by f the
function sampled from GenF (1

n) as part of g. Because GenF is (λ, ℓ, (t− 1)d, t′)-
rectangle free, assume further that n is sufficiently large so that

Pr
f←Gen(1n)

[
∃(t− 1)d−size rectangle S s.t. |Im(f) ∩ S| ≥ t′

]
≤ 1

4p(n)
.

and

Pr
f←Gen(1n)

[f is not injective] ≤ 1

4p(n)
.

17

In particular, let GOODf be the event that f is injective and for all (t−1)d-sized
rectangle S we have |Im(f) ∩ S| < t′. Then, for every such n,

Pr
g←GenG(1n)

[
MCOLLg,t′(C) ∧ GOODf

∣∣∣ C ← An(g)
]
>

1

p(n)
−2· 1

4p(n)
=

1

2p(n)
.

Now, assume that MCOLLg,t′(C) ∧ GOODf indeed occurs. Define a random

variable C ′ = f(C) ⊆ {0, 1}2dn, and define C ′i for i ∈ [2d−1] as the projection
of C ′ on the i-th 2n-bit block of each string in x. Further, define the rectangle
S = C ′1×· · ·×C ′2d−1 . Note that C ′ ⊆ S and |C ′| = t. (The latter is true because
f is injective.) Then,

|Im(f) ∩ S| ≥ |C ′ ∩ S| = |C ′| = t′ .

Now, because Goodf holds, it therefore cannot be that all C ′i’s are at most size
(t−1)d, since otherwise S would be a size (t−1)d rectangle with large intersection
with Im(f). Thus, we have overall established that

Pr
g←GenG(1n)

[
MCOLLg,t′(C) ∧ ∃i ∈ [2d−1] : |C ′i| > (t− 1)d

∣∣∣ C ← An(g)
]
>

1

2p(n)

for infinitely many n’s. In turn, this allows us to give a simple adversary B =
(Bn)n∈N against GenHT = GenHT [GenH, d] which, given htd,h, internally sam-
ples f , builds g out of f and htd,h to simulate an execution of An, and then
returns C ′ = f(C). As the success probabilities of An and Bn are the same,
we clearly have

Pr
ht←GenHT (1n)

[
MCOLLht,t′(C

′) ∧
∃i ∈ [2d−1] : |C ′i| > (t− 1)d

∣∣∣ C ′ ← Bn(ht)

]
>

1

2p(n)

for infinitely many n’s. The existence of B however contradicts Proposition 3.
This concludes the proof. ⊓⊔

Constructions of rectangle-free families. Now we give two construc-
tions of rectangle-free families that result in domain extension when used in
conjunction with Proposition 4 above. Our first construction is simply obtained
from any t′-wise independent hash function family. This construction has the
benefit of being very simple, and the proof essentially follows from the fact
that a random function is rectangle-free for the parameters which we need,
along with the realization that t′-wise independence is enough to carry out the
proof. This rectangle-free family immediately yields meaningful domain exten-
sion, when combined with Proposition 4. In particular, Theorem 3 follows as
its corollary. Below, we discuss some alternative de-randomized coding-theoretic
instantiations of the family; the details of these are delegated to Appendix A.

Proposition 5 (Independent Hash Functions are Rectangle Free). For
any constant t, let Gen be a family of t′-wise independent hash functions from
λn bits to ln bits for l = 2d, λ = l/4, and t′ = 2tlog(λ)+2. Then Gen is a
(λ, l, (t− 1)d, t′)-rectangle-free family.

18

Proof. Let S be an arbitrary size (t − 1)d rectangle, and f ← Gen(1n). Then
for i ∈ {0, 1, ..., 2λn − 1} let XS,i be the indicator random variable for the event
that f(Enc(i)) is in S, where Enc is the encoding of i as a binary string. Let

XS =
∑2λn−1

i=0 XS,i, so that |Im(f) ∩ S| = XS .
Then, since f(Enc(i)) is, individually, uniformly random in {0, 1}ln (by the

independence of the hash function family) and |S| = (t− 1)dl/2, for all i,

E [XS,i] =
1

2ln
(t− 1)dl/2,

where the expectation is over the random choice of f . Further, t′-wise indepen-
dence of Gen means that the Xi are t′ wise independent. Thus for any subset T
of {0, 1, ..., 2λn − 1} of size t′,

Pr [∀i ∈ T : XS,i = 1] = E [XS,i]
t′
=

1

2lnt′
(t− 1)dlt

′/2

We now take a union bound over all such sets T , of which there are
(
2λn

t′

)
≤ 2λnt

′

to get

Pr [XS ≥ t′] ≤ Pr [∃T : ∀i ∈ T : XS,i = 1] ≤ 2λnt
′

2lnt′
(t− 1)dlt

′/2 .

We also note that the number of (t − 1)d-rectangles is
(

22n

(t−1)d
)l/2

, since the

binomial is the number of ways to choose each Si, and any combination of l/2
of them determine S. Since(

22n

(t− 1)d

)l/2

≤ 2nl(t−1)
d

,

we get

Pr [∃S : XS ≥ t′] ≤ 2nl(t−1)
d

· 2
λnt′

2lnt′
(t− 1)dlt

′/2 .

We now show that the exponential factors in this bound go to zero. With t′ =
2tlog(λ)+2 + 1, since l = 4λ and d = log(l),

t′ = 2tlog(4λ) = 2tlog(l) = 2td > 2(t− 1)d.

Thus, using that l = 4λ, we have

nl(t− 1)d + λnt′ − lnt′ = n
(
l(t− 1)d − (l − λ)t′

)
≤ n

(
l(t− 1)d − (l − λ)2(t− 1)d

)
≤ −ϵn ,

for some ϵ > 0. Then asymptotically,

Pr [∃S : |Im(f) ∩ S| ≥ t′] = Pr [∃S : XS ≥ t] ≤ c2−nϵ

19

for some constant c, showing that the first probability in the definition of a rect-
angle free code is indeed negligible, as required. Finally, since our hash function
family is also pairwise independent, for all x1, x2 ∈ {0, 1}λ we also have

Pr [f(x1) = f(x2)] ≤ 2−ln,

and another union bound over x1 and x2 gives

Pr [∃x1, x2 : f(x1) = f(x2)] ≤ 2(−l+2λ)n = 2−2λn ,

which is obviously negligible in n. But this last probability is just the probability
that f is not injective, completing the proof. ⊓⊔

Derandomizing rectangle-freeness. We complement the above result by
showing in Appendix A that one can build an explicit derandomized construction
of a rectangle-free family based on codes, i.e., one where GenF outputs a fixed
function. Note that this is not necessary to prove Theorem 3, as the sampler for
the MCRH family already uses randomness to output a particular hash function,
and thus using a t′-wise independent family does not lead to any qualitative
degradation of the result.

Nonetheless, we believe it is natural to ask whether randomness is necessary
for a rectangle-free family, given its inherent coding-theoretic flavor. Surprisingly,
achieving sufficiently good parameters seems to require fairly recent coding-
theoretic machinery, which is a testament to the simplicity of the above result for
t′-wise independent functions. Although the construction we give in Appendix
A does not quite achieve the parameters of Theorem 3, however, it is strong
enough to be used in the proof of Theorem 1. Note that the above result for
t′-wise independence already implicitly shows, by the probabilistic method, that
one can fix a single function meeting the requirements. However, constructing
such a function explicitly is nontrivial.

5 Putting Pieces Together (Proof of Theorem 1)

This section is dedicated to the proof of Theorem 1, the main result, which we
restate here.

Theorem 1. For any constants t and ϵ > 0, if an io-(t, 1 + ϵ)-MCRH exists,
then an io-CRH exists.

We will use the two results from Sections 3 and 4 in turn to prove the theorem;
we restate them here for convenience.

Theorem 2. For any constant c, equal to a power of two, there exists a constant

c2 such that if an io-
(
2c/2, c+ c2

log(n)
n

)
-MCRH exists, then an io-CRH exists.

Theorem 3 (Domain Extension for MCRH). Given a (t, 2)-MCRH for
constant t, for any constant λ there exists a (t′, λ)-MCRH for t′ = 2tlog(λ)+2.
The same holds when both the starting and ending MCRH are merely infinitely
often secure.

20

Proof (of Theorem 1). We break up the proof of Theorem 1 into two steps. In
the first part, we show that the Merkle-Damg̊ard construction [Mer91,Dam90]
allows us to build an io-(t′, 2)-MCRH from any io-(t, 1 + ϵ)-MCRH such that
if ϵ and t are constant, t′ is as well. In the second step, we show that starting
with an (io)-MCRH that maps 2n bits to n bits, we can arbitrarily improve
the collision resistance parameter t by alternating our hash-tree based domain
extension technique with our main transformation.

Step 1. Let Gen be a sampler for an io-(t, 1 + ϵ)-MCRH for constants t and
ϵ > 0. We define a new MCRH with sampler Gen′ by the Merkle-Damg̊ard
construction [Mer91,Dam90] as follows. For h in the support of Gen, we define
h′h : {0, 1}2n → {0, 1}n by

Procedure h′h(x):

1. Let c = ⌈ 1ϵ ⌉.
2. Let x′ = x ∥ 0 such that |x′| = (cϵ+ 1)n.
3. Let y ∥ y1 ∥ ... ∥ yc = x′ such that |y| = n and |yi| = nϵ for

all i ∈ [c].
4. Let z0 = y
5. For i ∈ [c], let zi = h(zi−1 ∥ yi).
6. Output zc.

Then Gen′ simply samples from Gen and outputs the corresponding h′:

Procedure Gen′(1n):

1. h← Gen(1n)
2. Output h′h.

We now have the following lemma, which completes step 1. Its proof is a
simplified analog of that of Proposition 3.

Lemma 4. Gen′ as defined above is an io-(tc, 2)-MCRH.

Proof. Suppose not, and let A = (An)n∈N be an efficient adversary against the
tc multi-collision resistance of Gen′. Then define adversary B = (Bn)n∈N against
t multi-collision resistance of Gen as follows.

Procedure Bn(h):

1. Let X = An(h
′
h).

2. If X = ⊥ output ⊥. Else let {x1, ..., xtc} = X.
3. Let c be as defined in h′h.
4. For each i ∈ [c], let Zi be the set of values zi obtained in the

computation of h′h(xj) for xj ∈ X.
5. For i ∈ [c] with i ≥ 1, for each z ∈ Zi, let Wz be the set of

values w ∈ Zi−1 such that for some xw ∈ X, the computation
of h′h(xw) has zi−1 = w and zi = z. For each such w, let uw

be the value yi from the computation of h′h(xw). If any Wz

satisfies |Wz| ≥ t, output t elements of {(w, uw) : w ∈Wz}.
6. Output ⊥.

21

Since A is a polynomial-size circuit family, it is not hard to see that B can
be implemented in polynomial size because its circuits run An and do some
additional efficient computations. We argue that whenever An successfully finds
a tc size collision on h′h, Bn finds a t-size collision on h. Then it follows that A
cannot succeed with non-negligible probability.

Suppose An succeeds and returns the set X in Step 1. Then ∀xi, xj ∈ X,
h′h(xi) = h′h(xj) by definition of An finding a multi-collision. Then |Zn| = 1,
since by definition h′h(x) is the zn defined in the computation of h′h on that x.
By definition |Z0| = |X| = tc. Therefore, since there are c+1 sets Zi, there must
exist an i ∈ [c] such that |Zi−1| ≥ t|Zi| by the pigeonhole principle. Then for
this choice of i, by averaging there must be a z ∈ Zi such that |Wz| ≥ t. Thus if
An succeeds then Bn will not reach Step 6.

By definition the set that Bn will output will have size t, since its elements
are distinct because each corresponds to a distinct w ∈ Wz. Furthermore, they
all collide under h, because by definition of h′h they all satisfy h(w, uw) = z. ⊓⊔

Step 2. Now we have an io-(t′, 2)-MCRH for t′ = tc. Note that since c = ⌈ 1ϵ ⌉
and ϵ is constant, c is also constant, and t′ is constant. Then Theorem 3 gives
that for any λ = 2d−2 + 1 for integer d, there exists an io-(2(t′)d, λ)-MCRH.
In particular, this family is also an io-(2d log(3t′), λ)-MCRH simply because this
is a weaker collision resistance requirement. Note that the exponent is growing
like O(d) = O(log(λ)). Therefore, since t′ is a constant, we can choose λ to be a
large enough constant such that the exponent is less than (λ−1)/4. Without loss
of generality, we can further choose λ such that d is an integer. Then applying
Theorem 2 with c = λ− 1 proves the existence of an io-CRH. ⊓⊔

6 Weakly Partial to Full MCRH (Proof of Lemma 3)

This section is dedicated to the proof of Lemma 3, restated below for convenience.

Lemma 3 (Weakly partial to full MCRH). If a weakly partial (t, k)-MCRH

exists, then so does a (t, k−O(log(n)n))-MCRH. The same holds in the infinitely
often case and/or if the construction is uniform.

We prove Lemma 3 by breaking it down into two parts:

Lemma 6 (Weakly partial to partial MCRH). If a weakly partial (t, k)-
MCRH exists, then so does a partial (t, k)-MCRH. The same holds in the in-
finitely often case and/or if the construction is uniform.

Lemma 1 (Partial to Full MCRH ([RV22] Lemma 7 Restated)). If there

exists a partial (t, k)-MCRH then there exists a (t, k − O(log(n)n))-MCRH. The
same holds in the infinitely often case and/or if the construction is uniform.

Assuming the above lemmas, Lemma 3 follows immediately by composition:
if a weakly partial (t, k)-MCRH exists, so does a partial (t, k) by Lemma 6, and

then a (t, k −O(log(n)n))-MCRH exists by Lemma 1.

22

Lemma 1 is proved in [RV22]. We give a proof of Lemma 6 below. The proof
resembles that Lemma 8 in [RV22], which however only applied to the special
case of a particular weakly-partial MCRH4 used there. We generalize the proof
by extracting the important properties into Definition 3 and proving Lemma 6.

Proof (of Lemma 6). Let Gen be a weakly partial (t, k)-MCRH, and q1(n) and
q2(n) the polynomials associated with Gen as in the definition of a weakly partial
MCRH. We will call an h sampled as h ← Gen(1n) good whenever it is defined

on a large fraction of its domain, and create a new sampler G̃en that samples
such good h with all but negligible probability. Formally, for any h in the range
of Gen(1n), we define

δh =
|{x ∈ {0, 1}n : h(x) ̸= ⊥}|

2n

and call h good if δh ≥ 1
3q1(n)

.

We start by showing that we can efficiently generate a good h, with only
negligible probability of failure. To this end, we define a MCRH sampler Gen0
as follows:

Procedure Gen0(1
n):

1. Sample h← Gen(1n).
2. For m = nq1(n)

2, sample x1, . . . , xm ← {0, 1}kn
3. Let δ̂h := |{i | h(xi) ̸= ⊥}|/m
4. If δ̂h ≥ 1

2q1(n)
output h, otherwise output ⊥.

We note that Gen0 outputs ⊥ as a sign for aborting. This makes it strictly
speaking not a valid generator (as it needs to output a function), but we can think
of ⊥ as being some canonical function. We observe that Gen0 runs in polynomial
time, because running Gen and m evaluations for h each take polynomial time.
We have h ̸= ⊥ with non-negligible probability, as established by the following
proposition.

Proposition 6 (Gen0 succeeds sufficiently often).

Pr
h′←Gen0(1n)

[h′ ̸= ⊥] ≥ 1

2q2(n)
.

Proof. Intuitively, Gen0 is very likely to succeed, i.e., h′ ̸= ⊥, as long as the hash
function it samples in Step 1, which we denote by h, has high δh. Note if h′ ̸= ⊥,
then h′ = h. Formally,

Pr
h′←Gen0(1n)

[h′ ̸= ⊥] ≥ Pr
h′←Gen0(1n)

[
h′ ̸= ⊥

∣∣∣ δh ≥ 1

q1(n)

]
× Pr

h←Gen(1n)

[
δh ≥

1

q1(n)

]
.

4 There it was not labelled as such, as the definition of a weakly partial MCRH is new
in our work. However, the construction in [RV22] meets this definition.

23

By definition, since Gen is a weakly partial MCRH, the second probability is at
least 1

q2(n)
. To bound the first probability, by complements we have

Pr
h′←Gen0(1n)

[
h′ ̸= ⊥

∣∣∣ δh ≥ 1

q1(n)

]
= 1− Pr

h←Gen0(1n)

[
δ̂h <

1

2q1(n)

∣∣∣ δh ≥ 1

q1(n)

]
We clearly have δ̂h = 1

m

∑m
i=1 1{h(xi)̸=⊥}, and for each i ∈ [m], 1{h(xi)̸=⊥} is

an unbiased estimator of δh. Then for any h ← Gen(1n) with δh ≥ 1
q1(n)

, over

the randomness of step 2 of Gen0, by Hoeffding’s inequality

Pr
Step 2 of Gen0(1n)

[
δ̂h <

1

2q1(n)

]
≤ Pr

Step 2 of Gen0(1n)

[
|δ̂h − δh| >

1

2q1(n)

]
≤ 2e

−2 m
(2q1(n))2 = 2e−

n
2 ≤ 1

2
.

Thus Prh′←Gen0(1n)

[
h′ ̸= ⊥

∣∣∣ δh ≥ 1
q1(n)

]
≥ 1

2 , completing the proof of the

proposition. ⊓⊔

We also show that conditioned on h ̸= ⊥, the h produced by Gen0 are good
with all but negligible probability.

Proposition 7 (Testing For Good h).

Pr
h←Gen0(1n)

[
δh ≥

1

3q1(n)

∣∣∣ h ̸= ⊥] ≥ 1− negl(n) .

Proof. Taking complements, by definition of conditional probability and Propo-
sition 6, we have

Pr
h←Gen0(1n)

[
δh <

1

3q1(n)

∣∣∣ h ̸= ⊥] =
Prh←Gen(1n)

[
δh < 1

3q1(n)
and h ̸= ⊥

]
Prh←Gen0(1n) [h ̸= ⊥]

≤ 2q2(n) Pr
h←Gen(1n)

[
δh <

1

3q1(n)
and h ̸= ⊥

]
.

As in the previous proposition, we apply Hoeffding’s inequality to δ̂h, which
gives

Pr
h←Gen(1n)

[
δh <

1

3q1(n)
and δ̂h ≥

1

2q1(n)

]
≤ Pr

h←Gen(1n)

[
|δh − δ̂h| ≥

1

6q1(n)

]
≤ 2e

−2 m
(6q1(n))2 = 2e−

n
18 .

Thus overall

Pr
h←Gen0(1n)

[
δh <

1

3q1(n)

∣∣∣ h ̸= ⊥] ≤ 2q2(n) · 2e−
n
18 ≤ negl(n).

The proposition follows by taking complements. ⊓⊔

24

Now, we define a new sampler Ĝen0 that repeatedly runs Gen0 and ends the
first time that it succeeds. This will boost the probability of success from the

1
2q2(n)

proven for Gen0 above to 1−negl(n), while maintaining the property that

the h’s sampled are good.

Procedure Ĝen0(1
n):

1. For r = q2(n)× n, sample h1, . . . , hr ← Gen0(1
n)

2. If there exists i ∈ [r] with hi ̸= ⊥, output hi

3. Output h← Gen(1n).

Ĝen0 is clearly polynomial time, and it always outputs a valid h. We first show
that it satisfies part 1 of the definition of a partial MCRH.

Proposition 8 (Ĝen0 outputs good h).

Pr
h←Ĝen0(1n)

[h is good] ≥ 1− negl(n) .

Note that if the above proposition holds, then by definition of good, Ĝen0
satisfies the first part of the partial MCRH definition with q(n) = 3q1(n).

Proof. For i ∈ [r], let BADi be the event that hi = ⊥ or hi ̸= ⊥ but hi it not
good. Then,

Pr
h←Ĝen0(1n)

[h is not good] ≤ Pr

[
r∧

i=1

BADi

]
=

r∏
i=1

Pr [BADi] ,

since the hi’s are sampled independently. Further, note that for hi ← Gen0(1
n),

Pr [BADi] ≤ Pr [hi = ⊥] + Pr

[
δhi

<
1

3q1(n)

∣∣∣ hi ̸= ⊥
]

≤ 1− 1

2q2(n)
+ negl(n)

by Propositions 6 and 7. Plugging this into the above,

Pr
h←Ĝen0(1n)

[h is not good] ≤
(
1− 1

2q2(n)
+ negl(n)

)r

≤
(
1− 1

2q2(n)

)m

(1 + negl(n))r ,

since dividing a negligible function by 1 − 1
2q2(n)

keeps it negligible. Further,

(1+negl(n))r can be replaced by 1+negl(n) by using the binomial theorem and
the fact that r is polynomial. Also,(

1− 1

2q2(n)

)r

≤ e−n/2

is negligible as well. This implies that Pr
h←Ĝen0(1n)

[h is not good] is negligible,

too, concluding the proof. ⊓⊔

25

Finally, we show that the partial MCRH defined by Ĝen0 retains the security
property from the underlying weakly partial MCRH. To this end, suppose that
there exists a polynomial-size adversary A = (An)n∈N and a polynomial p(n)
such that

Pr
h←Ĝen0(1n)

[MCOLLh,t(C) ∧ ⊥ /∈ h(C) | C ← An(h)] ≥
1

p(n)

for infinitely many n’s. (Or for all sufficiently large n’s in the infinitely often
case.) Then, for the same n’s, we have that

Pr
h←Gen(1n)

[MCOLLh,t(C) ∧ ⊥ /∈ h(C) | C ← An(h)] ≥
1

2p(n)q2(n)
− negl(n) .

To see this, assume without loss of generality that An is deterministic, and let

GOOD the set of functions h in the support of Ĝen0(1
n) for which An succeeds.

Then, the above can be written as

Pr
h←Ĝen0(1n)

[h ∈ GOOD] ≥ 1

p(n)
.

Whenever Ĝen0 does not reach Step 3, the distribution of its outputs is identical
to that of Gen0 conditioned on not outputting ⊥. We have shown indirectly
above that the probability of ever reaching Step 3 is negligible. Therefore, with
FAIL being the event that Step 3 is reached, then in particular

Pr
h←Ĝen0(1n)

[h ∈ GOOD] ≤ Pr
h←Ĝen0(1n)

[h ∈ GOOD | ¬FAIL] + Pr [FAIL]

= Pr
h←Gen0(1n)

[h ∈ GOOD | h ̸= ⊥] + negl(n) .

or, equivalently,

Pr
h←Gen0(1n)

[h ∈ GOOD | h ̸= ⊥] ≥ 1

p(n)
− negl(n) .

Now, for any fixed function h∗, we have

Pr
h←Gen0(1n)

[h = h∗ | h ̸= ⊥] =
Prh←Gen0(1n) [h = h∗ ∧ h ̸= ⊥]

Prh←Gen0(1n) [h ̸= ⊥]
≤ 2q2(n) · Pr

h←Gen0(1n)
[h = h∗ ∧ h ̸= ⊥]

≤ 2q2(n) · Pr
h←Gen(1n)

[h = h∗] ,

where the first inequality follows from Proposition 6, whereas the second follows
from the fact that a function h∗ is output by Gen0 with probability not larger
than the probability that the same function is output by Gen itself. Therefore,

26

the probability that An succeeds when h is output by Gen(1n) is

Pr
h←Gen(1n)

[h ∈ GOOD] ≥ 1

2q2(n)
· Pr
h←Gen0(1n)

[h ∈ GOOD | h ̸= ⊥]

≥ 1

2q2(n)p(n)
− negl(n) ,

as we wanted to show. This completes the proof of Lemma 6. ⊓⊔

Acknowledgments

This research was partially supported by NSF grants CNS-2026774, CNS-2154174,
a JP Morgan Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.

References

BDRV18. Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini
Vasudevan. Multi-collision resistant hash functions and their applications.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 133–161. Springer, Heidelberg,
April / May 2018.

BKP18. Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resis-
tance: a paradigm for keyless hash functions. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, 50th ACM STOC, pages 671–684.
ACM Press, June 2018.

Dam90. Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 416–427. Springer, Heidel-
berg, August 1990.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 276–288. Springer, Hei-
delberg, August 1984.

GI01. Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of
efficiently decodable codes. In 42nd FOCS, pages 658–667. IEEE Computer
Society Press, October 2001.

GR06. Venkatesan Guruswami and Atri Rudra. Explicit capacity-achieving list-
decodable codes. In Jon M. Kleinberg, editor, 38th ACM STOC, pages
1–10. ACM Press, May 2006.

GS98. Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-
Solomon and algebraic-geometric codes. In 39th FOCS, pages 28–39. IEEE
Computer Society Press, November 1998.

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

Jou04. Antoine Joux. Multicollisions in iterated hash functions. Application to cas-
caded constructions. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 306–316. Springer, Heidelberg, August 2004.

27

KNY18. Ilan Komargodski, Moni Naor, and Eylon Yogev. Collision resistant hash-
ing for paranoids: Dealing with multiple collisions. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of
LNCS, pages 162–194. Springer, Heidelberg, April / May 2018.

KY18. Ilan Komargodski and Eylon Yogev. On distributional collision resis-
tant hashing. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 303–327. Springer,
Heidelberg, August 2018.

Mer91. Ralph C. Merkle. Fast software encryption functions. In Alfred J. Menezes
and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages
476–501. Springer, Heidelberg, August 1991.

Per. Personal communication with the authors of [KNY18].
Rud07. Atri Rudra. List Decoding and Property Testing of Error Correcting Codes.

Phd thesis, University of Washington, Seattle, WA, 2007. Available at
https://cse.buffalo.edu/faculty/atri/papers/coding/thesis.html.

RV22. Ron D. Rothblum and Prashant Nalini Vasudevan. Collision-resistance from
multi-collision-resistance. In Yevgeniy Dodis and Thomas Shrimpton, ed-
itors, CRYPTO 2022, Part III, volume 13509 of LNCS, pages 503–529.
Springer, Heidelberg, August 2022.

Sim98. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In Kaisa Nyberg, editor, EU-
ROCRYPT’98, volume 1403 of LNCS, pages 334–345. Springer, Heidelberg,
May / June 1998.

Appendix A Derandomizing Rectangle-Freeness

In this section, we prove the existence of a single, explicit function which can be
used as the encoding function in our domain extension construction for MCRH.
Recall that the goal was to construct a (t′, λ)-MCRH using a (t, 2)-MCRH, for
λ much larger than 2 and t′ not too much larger than t. The idea behind the
construction was to first encode the input into ln bits with an encoding function
f , and then apply a hash tree built from the MCRH. As shown in Proposition
4, the notion of rectangle-freeness of Definition 7 captures the requirements on
f for this construction to be secure. Or course, since f is a single function, the
requirements of the definition will hold with probability 1.

We view the function f : {0, 1}λn → {0, 1}ln in Definition 7 as a code with
block size 2n with rate λ

l . This allows us to relate rectangle-freeness to the
following definition, which we restate from [Rud07].

Definition 8 ([Rud07] Definition 2.4, restated and specialized). Let C
be a q-ary code of block length l. Let r,R ≥ 1 be integers and 0 ≤ ρ ≤ 1 be real.
Then C is (ρ, r,R)-List-Recoverable if the following is true. For every sequence
of sets S1, ..., Sl where Si ⊂ [q] and |Si| ≤ r for all 1 ≤ i ≤ l, there are at most
R codewords c = ⟨c1, ..., cl⟩ ∈ C such that ci ∈ Si for at least (1−ρ)l positions i.

For a family containing just a single function, our Definition 7 corresponds
to the above with ρ = 0. Since for ρ′ > ρ, a (ρ′, r, R)-list-recoverable code is also
(ρ, r,R)-list-recoverable, ρ = 0 is the weakest possible setting of the parameter.

28

Now we argue that folded Reed Solomon codes give the desired f . We use the
following corollary from [Rud07]. (See also [GR06] for work leading up to this
result.)

Corollary 2 ([Rud07] Corollary 3.7, restated). For every integer r ≥ 1, for
all K,K ′ with 0 ≤ K ≤ K ′ < 1, for all constants ϵ ∈ (0,K], and for every prime
p, there is an explicit family of folded Reed-Solomon codes, over fields of charac-
teristic p that have rate at least K and which can be (1−R−ϵ, r, R(l)-list recovered

in polynomial time, where for codes of block length l, R(l) = (l/ϵ2)O(ϵ−1 log(r/K))

and the code is defined over alphabet of size (l/ϵ2)O(ϵ−2 log(r/(1−K′))).

We now show that the above can be used to obtain non-trivial domain exten-
sion by plugging it into the construction above Proposition 4. We are interested
in codes where the rate K is a constant, and set K = 1

2 . Note that this implic-
itly sets l = 2λ, i.e. the code expands its inputs to twice their length. We set
ϵ = 1

10 , in particular constant. Then the above corollary gives a (ρ, r,R(l))-list-
recoverable code for ρ > 0, which is also a (0, r, R(l))-list-recoverable code. We
set r = (t− 1)d for d = log(l). Then we have R(l) = O(lcd log(t−1)), where c is a
fixed constant. By the big O notation of [Rud07], this c is fixed as l varies.

By setting K ′ sufficiently close to 1, we can guarantee that the alphabet
of the code is q = 22n; i.e. that the blocks of the code are 2n bits long as in
our setting. Thus we have a fixed c such that for tcode = O(lcd log(t−1)) we can
construct (λ, l, (t− 1)d, tcode)-rectangle-free codes for arbitrary l and t.

We briefly argue that the parameters of this code are sufficient to be used
in place of the randomized one. The parameters are used only in Step 2 of the
proof of Theorem 1. There, we require that we can choose a sufficiently large
(constant) λ for which tcode ≤ 2(λ−1)/2 so that we can apply Theorem 2 with
c = λ − 1. This is possible with the derandomized code described because it
has tcode growing (in λ) like O(λO(log(λ)), which is order 2log

2(λ) and eventually
smaller than 2(λ−1)/2.

Therefore, such a code can be used in place of the randomized one from
Proposition 5 in Proposition 4 to prove Theorem 1; the proof is analogous to the
one carried out in section 5 with the modification to Step 2 as mentioned above.

29

	Collision Resistance from Multi-Collision Resistance for all Constant Parameters

