Paper 2024/1343

Generalized one-way function and its application

Hua-Lei Yin, Renmin University of China
Abstract

One-way functions are fundamental to classical cryptography and their existence remains a longstanding problem in computational complexity theory. Recently, a provable quantum one-way function has been identified, which maintains its one-wayness even with unlimited computational resources. Here, we extend the mathematical definition of functions to construct a generalized one-way function by virtually measuring the qubit of provable quantum one-way function and randomly assigning the corresponding measurement outcomes with identical probability. Remarkably, using this generalized one-way function, we have developed an unconditionally secure key distribution protocol based solely on classical data processing, which can then utilized for secure encryption and signature. Our work highlights the importance of information in characterizing quantum systems and the physical significance of the density matrix. We demonstrate that probability theory and randomness are effective tools for countering adversaries with unlimited computational capabilities.

Metadata
Available format(s)
PDF
Category
Cryptographic protocols
Publication info
Preprint.
Keywords
Generalized one-way functionkey distributionunconditional securityprobability theoryrandomness
Contact author(s)
hlyin @ ruc edu cn
History
2024-08-30: approved
2024-08-27: received
See all versions
Short URL
https://ia.cr/2024/1343
License
Creative Commons Attribution-NonCommercial
CC BY-NC

BibTeX

@misc{cryptoeprint:2024/1343,
      author = {Hua-Lei Yin},
      title = {Generalized one-way function and its application},
      howpublished = {Cryptology {ePrint} Archive, Paper 2024/1343},
      year = {2024},
      url = {https://eprint.iacr.org/2024/1343}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.