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One-way functions are fundamental to classical cryptography and their existence remains a long-
standing problem in computational complexity theory [1, 2]. Recently, a provable quantum one-way
function has been identified, which maintains its one-wayness even with unlimited computational
resources [3]. Here, we extend the mathematical definition of functions to construct a generalized
one-way function by virtually measuring the qubit of provable quantum one-way function and ran-
domly assigning the corresponding measurement outcomes with identical probability. Remarkably,
using this generalized one-way function, we have developed an unconditionally secure key distribu-
tion protocol based solely on classical data processing, which can then utilized for secure encryption
and signature. Our work highlights the importance of information in characterizing quantum sys-
tems and the physical significance of the density matrix. We demonstrate that probability theory
and randomness are effective tools for countering adversaries with unlimited computational capa-
bilities.

Cryptography plays a crucial role in protecting per-
sonal privacy, safeguarding national security, and ad-
vancing the digital economy. Modern cryptography origi-
nated from Shannon’s introduction of information theory
into cryptanalysis, where the one-time pad was demon-
strated to offer unconditional security through probabil-
ity theory [4]. Specifically, the posterior probability of
the plaintext, given the ciphertext in the one-time pad,
remains equal to the prior probability of the plaintext,
even when adversaries have unlimited computational re-
sources [4, 5]. To address key length and key reuse is-
sues, Shannon introduced the concepts of diffusion and
confusion [4], which facilitated the development of sym-
metric encryption algorithms such as the Advanced En-
cryption Standard [6]. To tackle key distribution chal-
lenges in large user networks, public-key cryptography
was developed [7]. Central to this is the concept of
the one-way function, which provides asymmetry [1] and
is a critical resource for designing digital signatures [2],
zero-knowledge proof [8], and secure multiparty compu-
tation [9].

One-way function is a particular type of function f that
is computationally easy to evaluate in the forward direc-
tion but difficult to invert. Specifically, for each input
x, f(x) can be computed in polynomial time. However,
given a random output f(x), it is infeasible to deter-
mine the input x using a deterministic Turing machine in
polynomial time [1]. Although the existence of one-way
functions remains unproven, Numerous public-key cryp-
tographic systems [7, 10–16] have been proposed based
on the assumption of specific one-way functions, with
some of these systems evolving into widely adopted stan-
dards on the Internet. Indeed, proving the existence of
one-way functions would also substantiate the conjecture
that P ̸= NP, one of the seven Millennium Prize Prob-
lems. However, the truth of P ≠ NP does not necessarily

imply the existence of one-way functions.
Unfortunately, certain problems traditionally consid-

ered as one-way functions have been compromised by
known quantum algorithms [17]. For instance, the quan-
tum Fourier transform can efficiently solve period-finding
problems, encompassing prime factorization and dis-
crete logarithm among others. Additionally, the hid-
den subgroup problem in finite abelian groups is vulner-
able to exponential speedup attacks by quantum com-
putations [18]. Consequently, the latest development
in public-key cryptography, post-quantum cryptogra-
phy [19], is regarded as resistant to quantum comput-
ing attacks [20]. For instance, lattice-based cryptog-
raphy [21, 22], which relies on non-commutative hid-
den subgroup problems, is a prominent example. Ta-
ble I summarizes various public-key cryptographic sys-
tems and the one-way functions upon which they are
based. Actually, even if one-way functions exist, public-
key cryptography cannot be secure against adversaries
with unlimited computational resources, as such adver-
saries could potentially exhaustively explore all possible
results to find the correct solution. Here, we develop a
generalized one-way function with rigorous one-wayness
and applied it to the design of unconditionally secure key
distribution.

Generalized one-way function

To introduce our generalized one-way function, let us
first retrospect a quantum system fundamentally dis-
tinct from its classical counterpart (Fig. 1A). A two-
dimensional quantum system can be represented on
the Bloch sphere, where a pure state is described by
|ϕ(θ, φ)⟩ = cos θ

2 |+z⟩+e
iφ sin θ

2 |−z⟩, lying on the sphere’s
surface. Here, |ϕ(θ, φ)⟩ represents a superposition of |+z⟩
and |−z⟩ with a fixed phase φ. Measuring in the X ba-
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TABLE I. Summary of notable public-key cryptographic systems, outlining the task, one-way function and the level of security.

Scheme Cryptographic task One-way function Computational security Unconditional security

(Quantum)

Diffie-Hellman [7] Key distribution Discrete logarithm No No

Rivest-Shamir-Adleman [10] Encryption and signature Prime factorization No No

ElGamal [11] Encryption and signature Discrete logarithm No No

Elliptic-curve [12, 13] Key distribution Discrete logarithm No No

Encryption and signature

CRYSTALS-Kyber [14] Encryption Learning with errors Maybe No

CRYSTALS-Dilithium [15] Signature Learning with errors Maybe No

Short integer solution

SPHINCS+ [16] Signature Stateless hash function Maybe No
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FIG. 1. Pure state and mixed state of a two-dimensional quantum system. (A) Bloch sphere representation of a
density matirx. A superposition state, when measured in the X basis–which is realized by a Hadamard gate H followed by
a Z basis measurement Mz–will collapse randomly into one of the eigenstates of the measurement operator with a certain
probability. (B) A quantum system can be represented as a pure state |ϕ(π

2
, φ)⟩ on the periphery of the x− y circle if one has

the phase information φ and θ = π
2
. (C) A quantum system can only be represented as the maximally mixed state Î/2 if θ = θ

2
and no phase information φ is available. (D) The random mapping rule fk : j → j′. There are m! (with m = 3 as an example)
possible random mappings from a finite domain of size m to a finite codomain of size m.

sis yields |+z⟩ with probability (1 + sin θ cosφ)/2 and
|−z⟩ with probability (1− sin θ cosφ)/2. The maximally

mixed state Î/2 is located at the center of the Bloch
sphere. A quantum system is considered a pure state

only if the parameters θ and φ are known. Specifically,
|ϕ(θ = π

2 , φ)⟩ =
(
|+z⟩+ eiφ|−z⟩

)
/
√
2 lies on the edge of

the x− y circle (Fig. 1B). Conversely, if the phase is un-
known and random, the system is in a maximally mixed
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FIG. 2. Comparison of several one-way functions. (A) Traditional one-way function based on the computational
complexity assumptions. The forward computation is straightforward, while the reverse problem is very difficult. Once the
trapdoor information is acquired, the solution becomes easily accessible. (B) Provable quantum one-way function. The one-
wayness is rigorously maintained even with unlimited computational resources. The forward and backward quantum states are
entirely distinct, as the quantum state of a system evolves with the information acquired. (C) Generalized one-way function.
(D) Provable quantum one-way function combined with the X basis measurement. For each input x⃗ (where the random
mapping rule transforms x⃗ to x⃗′), there is a probability p(x⃗′) of obtaining output 0 and 1− p(x⃗′) of obtaining output 1.

state Î/2 (Fig. 1C). Thus, the quantum state of the same
system can vary depending on the observer’s information.

In a game between a sender and a receiver, the sender
randomly selects one of m symmetric qubits, |ψ(j)⟩ =(
|+z⟩+ ei

2π
m j |−z⟩

)
/
√
2, with equal probability based on

a random index j ∈ {0, 1, . . . ,m− 1}, and sends it to the
receiver. The receiver’s task is to identify which of the m
states was chosen (i.e., determine j). From the receiver’s
perspective, since the phase φ = 2π

m j is completely un-
known, the received qubit can only be perceived as a
maximally mixed state,

ρ̂ =
1

m

m−1∑
j=0

|ψ(j)⟩⟨ψ(j)| = Î

2
. (1)

The minimum probability of an incorrect answer by the
receiver is 1 − 2/m when the process is repeated inde-
pendently a sufficient number of times (see supplemen-

tary materials). It is close to the error rate of 1 − 1/m
that would be achieved by guessing one of the m states
completely at random when m is large. To prevent the
adversary from inferring fixed bit values based on the
phase interval, the concept of a random mapping rule is
introduced [3]. Random Mapping [2]: Let Km denote the
collection of all one-to-one mappings from the domain
{0, 1, . . . ,m− 1} to the codomain {0, 1, . . . ,m− 1}. The
k-th element of Km is referred to as a k-th random map-
ping rule fk : j → j′. Clearly, there are |Km| = m! pos-
sible mapping rules (see Fig. 1D). Assuming that every
mapping in Km is equally likely, it can be determined by
random numbers consisting of m log2m bits [3]. Under
the random mapping rule fk : j → j′, even if the phases
of two qubits are nearly identical, their corresponding
indices are entirely unrelated.

In public-key cryptography utilizing traditional one-
way functions f : X⃗ → Y⃗ (see Fig. 2A), the output f(x⃗)
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derived from the input x⃗ is classical data. This output is
deterministic and accessible to all parties, including po-
tential adversaries. Consequently, the adversary can em-
ploy the output f(x⃗), leveraging unlimited computational
resources, to successfully decipher the original input x⃗.
In contrast, with our provable quantum one-way func-
tion qf : X⃗ → Ŷ (see Fig. 2B), the output is a quantum
system. Due to the application of the random mapping
rule fk : x⃗→ x⃗′ and random input x, the adversary lacks
any knowledge of the original input x⃗, even when pro-
vided with unlimited computational resources. From the
adversary’s perspective, the quantum system cannot be
described as a pure state |ψ(x⃗′)⟩ but must instead be rep-

resented by a maximally mixed state Î/2. This directly
provides an asymmetry between the adversary and the
legitimate user. This implies that, regardless of the clas-
sical or quantum operations performed by the adversary
on the quantum system within the framework of the prov-
able quantum one-way function, the one-wayness remains
rigorously maintained. If we focus solely on the input X⃗
and output Y⃗ , it becomes evident that the generalized
one-way function gf : X⃗ → Y⃗ (see Fig.2C) is equivalent

to the provable quantum one-way function qf : X⃗ → Ŷ
combined with the X basis measurement mf : Ŷ → Y⃗
(see Fig.2D). The rigorous one-wayness of the general-
ized one-way function is preserved because the X basis
measurement can be conceptually regarded as a special
quantum operation performed by the adversary in the
context of the provable quantum one-way function.

Generalized One-Way Function: Consider a set of in-
dependent and randomly generated binary bit substrings
x⃗i ∈ {0, 1}log2 m, where i ∈ {1, 2, . . . , n}, which together

constitute the input data string X⃗ = x⃗1||x⃗2|| . . . ||x⃗n. The
k-th (k ∈ {1, 2, . . . ,m!}) random mapping rule trans-
forms x⃗i into x⃗′i, such that fk(x⃗i) = x⃗′i. The binary
bit value y⃗i ∈ 0, 1 will form the output data string
Y⃗ = y⃗1||y⃗2|| . . . ||y⃗n. The generalized one-way function

gf : X⃗ → Y⃗ is defined as a multivalued function that
maps the input data string X⃗ ∈ {0, 1}n log2 m to the out-

put data string Y⃗ ∈ {0, 1}n. The mapping is given by:

y⃗i = gf(x⃗i) =


0, probability

1+cos[ 2πm fk(x⃗i)]
2 ,

1, probability
1−cos[ 2πm fk(x⃗i)]

2 ,

(2)

where m is a sufficiently large integer. Note that the
binary bit string is automatically converted to a deci-
mal value as needed during calculations. When prepar-
ing n qubit states

⊗n
i=1 |ψ(x⃗′i)⟩, the output data string

Y⃗ can be directly obtained using the X basis measure-
ment acting on each qubit state. To introduce an equiv-
alent virtual measurement employed in our generalized
one-way function, consider the following steps: First,
nb-bit quantum random numbers are used to form bit
string A⃗ = a⃗1||⃗a2|| · · · ||⃗an with a⃗i ∈ {0, 1}b. Second, if

0 ≤ a⃗i < 2b−1
[
1 + cos

(
2π
m x⃗′i

)]
, then y⃗i = 0; otherwise,

y⃗i = 1.
In fact, the rigorous one-wayness of the generalized

one-way function can be proven not only using provable
quantum one-way function based on density matrix the-
ory, but also through probability theory method. By
calculation (see supplementary materials), we find that

Pr[x⃗i|y⃗i] =
Pr[y⃗i|x⃗i]Pr[x⃗i]

Pr[y⃗i]
= Pr[x⃗i], (3)

and if m is sufficiently large, the following holds:

Pr[X⃗|Y⃗ ] ∼ Pr[X⃗]. (4)

Thus, the a posteriori probability that the input data is
X⃗, given that the output Y⃗ is observed, is nearly identical
to the prior probability that the input is X⃗. In other
words, after applying the generalized one-way function
to a completely random input data string X⃗, we cannot
exclude any possible values of X⃗; all values of X⃗ are
almost equally probable if we only know the output data
string Y⃗ .

Probability key distribution

A direct application of the generalized one-way func-
tion is the construction of an unconditionally secure key
distribution protocol, referred to as Probability Key Dis-
tribution (PKD). As illustrated in Fig. 3, our PKD proto-
col employs full classical data processing, allowing it to be
readily implemented in any network environment. A no-
table feature of PKD is that Alice and Bob are required to
share random bit strings K⃗ ∈ {0, 1}s, K⃗fix ∈ {0, 1}s+t−1,
and K0 ∈ {0, 1}m logm

2 . Specifically, the random bit

strings K⃗ and K0 are used only once per session and are
updated in subsequent sessions, whereas the random bit
string K⃗fix is reused across thousands of sessions before
being updated.
For each session, Alice employs quantum random num-

bers to decide the k-th random mapping rule fk [3]. She

uses the random bit string K⃗0 as a key and transmits the
mapping rule fk to Bob using the one-time pad. Alice
utilizes quantum random numbers to construct the input
data string X⃗ = x⃗1||x⃗2|| · · · ||x⃗n ∈ {0, 1}n logm

2 , which is

then mapped to X⃗ ′ = x⃗′1||x⃗′2|| · · · ||x⃗′n using the random
mapping rule fk : x⃗i → x⃗′i. Alice then applies the virtual
measurement operation to obtain the output data string
Y⃗ . To meet the criteria of a generalized one-way function
X⃗ → Y⃗ , the generated data string D⃗ ∈ {0, 1}n logm

2 must
cover all possible values in each session, given that Eve
has access to X⃗ ⊕ D⃗. Thus, let D⃗ = K⃗H, where H is a
Toeplitz matrix with s rows and t columns (t = n log2m),

generated from the random bit string K⃗fix. Due to the
rigorous one-wayness of the generalized one-way function,
the bit strings K⃗ and K⃗fix remain unknown and random
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FIG. 3. Schematic diagram of PKD protocol. In each session, Alice uses the generalized one-way function to generate a
bit string Y⃗ based on the input random bit string X⃗. Alice and Bob exchange the random bit string X⃗ using a data string D⃗,
which is produced from the pre-shared bit string K⃗ and a Toeplitz matrix H. Alice then announces the XOR results Y⃗ ⊕ R⃗a,
where R⃗a is her raw key. Bob guesses the bit string Y⃗ to obtain Z⃗ based on the received X⃗. To deduce Alice’s raw key R⃗a,
Bob computes his own raw key R⃗b by performing an XOR operation between Y⃗ ⊕ R⃗a and Z⃗. Finally, Alice and Bob apply
error correction and privacy amplification to derive an identical and secret key bit string Γ⃗.

from Eve’s perspective, even if Eve knows Y⃗ . Conse-
quently, only Alice and Bob can access the bit string X⃗.
To correctly deduce Alice’s raw key R⃗a, Bob uses the
same mapping rule fk to derive X⃗ ′ and attempts to esti-
mate Y⃗ as accurately as possible, resulting in bit string
Z⃗ = z⃗1||z⃗2 · · · ||z⃗n. One possible approach is to set z⃗i = 0
if 0 ≤ x⃗′i < m/4 or 3m/4 ≤ x⃗′i < m, and z⃗i = 1 if
m/4 ≤ x⃗′i < 3m/4.

The value of z⃗i is deterministically associated with
the interval of x⃗′i, so Bob cannot disclose any infor-

mation about his own raw key R⃗a = R⃗a ⊕ Y⃗ ⊕ Z⃗
throughout the error correction process. Using Alice’s
raw key R⃗a as a reference, Bob corrects his raw key R⃗b

to align with Alice’s through an error correction algo-
rithm, such as a low-density parity check code. The
amount of information required for the error correction
step is λ = nfh(E). The Shannon entropy function is
h(x) = −x log2 x−(1−x) log2(1−x). E = 1

2−
1
π ≃ 18.2%

(f ≥ 1) is the bit error rate (the error correction effi-

ciency) between R⃗a and R⃗b. After error correction, error
verification and privacy amplification, if the secret key
length ℓ of one session satisfies [3]

ℓ ≤ n− λ− log2
2

εcor
− 2 log2

3

2εsec
, (5)

our PKD protocol is εcor-correct and εsec-secret. The
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net remaining secret key length for each session is ℓ−s−
m log2m , as K⃗fix is updated only after thousands of ses-
sions, making its cost negligible. The secret key rate of
our OKD primarily depends on the data processing rate
of system and the quantum random number generation
rate. For optional parameters, we set m = 210, n = 1010,
s = 104, b = 12, εcor = 10−15 and εsec = 10−10. Actually,
if both error correction and error verification communi-
cations utilize one-time pad encrypted transmission, one
can obtain a nearly perfectly secret key without employ-
ing complex privacy amplification post-processing.

On one hand, combining PKD with a one-time pad
achieves unconditionally secure encryption, ensuring the
confidentiality of information processing [4]. On the
other hand, integrating PKD with one-time universal
hashing and secret sharing enables unconditionally secure
signatures, providing authenticity, integrity, and non-
repudiation in information processing [23].

Outlook

In summary, we have developed a generalized one-way
function with rigorous one-wayness, addressing a long-
standing open problem in computational complexity and
cryptography. We have also proposed an unconditionally
secure key distribution protocol based on this function,
relying entirely on classical data processing. The core of
our unconditional security is founded on the randomness
of quantum physics, the density matrix theory of quan-
tum mechanics, and probability theory of mathematics.
Compared to our recent result [3], this work employs
phase-randomized qubit superposition states rather than
phase-randomized weak coherent states, which directly
translates the quantum state preparation and measure-
ment into a fully classical process. Additionally, the bit
error rate of raw keys has improved from 25% to 18.2%.
These advancements make our PKD protocol suitable for
widespread and cost-effective deployment in the emerg-
ing digital economy, with high efficiency and uncondi-
tional security. We also anticipate that the generalized
one-way function will find broad applications in other
unconditionally secure cryptographic primitives.
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I. MINIMUM ERROR DISCRIMINATION

For m possible states {ρ̂j}m−1
j=0 with associated a priori probabilities {pj}m−1

j=0 , there is a POVM {Ej}m−1
j=0 with m

elements that can achieve minimum error discrimination. For many cases, the minimum error discrimination measure-
ment is the square-root measurement. In addition, there is an important conclusion for square-root measurements;
i.e., for any set of pure states, there is at least one set of prior probabilities such that the minimum error discrimi-
nation measurement for this set of states is the square root measurement. The POVM elements of the square-root
measurement can be given by [1]

Êj = pj ρ̂
−1/2ρ̂j ρ̂

−1/2, (S1)

where ρ̂ =
∑m−1

j=0 pj ρ̂j . Obviously, the above operator Ej is positive, and
∑m−1

j=0 Êj = Î.
The square-root measurement is the minimum error discrimination measurement for symmetric pure states. Consid-

ering m symmetric pure states
{
|ψ(j)⟩ = 1√

2
(|+z⟩+ ei2πj/m|−z⟩)

}m−1

j=0
with a uniform priori probability of pj = 1/m.

The Gram matrix of the states we are trying to distinguish between is an m ×m matrix, where the matrix element
Gi,j of the i-th row and j-th column can be defined as

Gi,j = ⟨ψ(i)|ψ(j)⟩ = 1√
2

(
⟨+z|+ e−i2πi/m⟨−z|

) 1√
2

(
|+z⟩+ ei2πj/m|−z⟩

)
=

1

2

[
1 + ei2π(j−i)/m

]
,

(S2)

where i, j = 0, 1, . . . ,m−1. Note that we let the matrix start with zero rows and zero columns instead of one row and
one column for consistency. Obviously, the Gram matrix G is a circulant matrix since it relies only on the difference
j − i. It can be diagonalized with the unitary discrete Fourier transform. The eigenvalue λr of Gram matrix G can
be given by

λr =

m−1∑
k=0

ckω
kr (S3)

where we have r = 0, 1, . . . ,m− 1, ω = ei2π/m and ck = 1
2

(
1 + ei2πk/m

)
. The optimal minimum error discrimination

probability Pmin can be written as [2]

Pmin = 1− 1

m2

∣∣∣∣∣
m−1∑
r=0

√
λr

∣∣∣∣∣
2

= 1− 1

m2

∣∣∣∣∣∣
m−1∑
r=0

√√√√m−1∑
k=0

ei2πkr/m

2
(1 + ei2πk/m)

∣∣∣∣∣∣
2

,

= 1− 2

m
.

(S4)
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We also have an intuitive explanation of the above minimum error discrimination results Pmin = 1 − 2/m if m is
even. Let two qubit states {|ψ(k)⟩, |ψ(k +m/2)⟩} be the k-th set (0 ≤ k ≤ m/2 − 1), there are m/2 different sets.
The density matrix of each set is identical to the maximally mixed state, i.e.,

ρ̂k =
1

2
[|ψ(k)⟩⟨ψ(k)|+ |ψ(k +m/2)⟩⟨ψ(k +m/2)|]

=
1

2
(|+z⟩⟨+z|+ |−z⟩⟨−z|) = Î

2
.

(S5)

Obviously, no one can distinguish the m/2 different sets with the same density matrix. The adversary can only
randomly guess one set from m/2 sets, and the probability of guessing error is 1 − 2/m. Besides, in each set, the
two qubit states are orthogonal and thus can be distinguished with 100% probability. Therefore, the minimum error
discrimination probability is Pmin = 1− 2

m for m symmetric qubit states.

We remark that m symmetric pure qubit states {|ψ(j)⟩}m−1
j=0 are linearly dependent quantum states

ρ̂ =
1

m

m−1∑
j=0

|ψ(j)⟩⟨ψ(j)|

=
1

2
(|+z⟩⟨+z|+ |−z⟩⟨−z|) = Î

2
,

(S6)

where unambiguous quantum state discrimination cannot be successfully performed. An unambiguous state discrimi-
nation measurement among m linearly dependent qubit states is only possible when at least m−1 copies of the states
are available [3].

If the adversary does not have the quantum state, who can only randomly guess and has an error probability of
1− 1

m . For sufficiently large m, the minimum error discrimination is almost the same as a random guess. If we go from
guessing the quantum state to guessing the encoded bit substring corresponding to the quantum state, the random
mapping rule fk : j → j′ further removes the difference between the minimum error discrimination measurement and
random guessing since each qubit state corresponds to all possible bit substrings.

Consider a quantum system consisting of n subsystems, where each subsystem is one of m symmetric qubits with
equal probability. Clearly, the quantum-state sender perceives the entire system as a pure state comprising n qubits.
In contrast, from the recipient’s perspective, the system appears as a mixed state, represented by ρ̂⊗n, which is the
tensor product of n copies of the state ρ̂. The mixed state representation ρ̂⊗n of quantum system can be written as

ρ̂⊗n =
Î
⊗n

2n
=

 1

m

m−1∑
j=0

|ψ(j)⟩⟨ψ(j)|

⊗n

=
1

mn


∑

r0+r1+···+rm−1=n

rj≥0, 0≤j≤m−1

( n
r1, r2, · · · , rm−1

) ⊗
0≤j≤m−1

(|ψ(j)⟩⟨ψ(j)|)⊗rj


 ,

(S7)

where rj ≥ 0 is integer and multinomial coefficient is given by(
n

r1, r2, · · · , rm−1

)
=

n!∏m−1
j=0 rj !

. (S8)

Each subsystem is measured independently in the X basis for the virtual generalized one-way function.

II. CONDITIONAL PROBABILITY DISTRIBUTION OF RANDOM VARIABLE

In this section, we first review the generalized one-way function in the main text. Generalized one-way function: Let
independent and random binary bit substrings x⃗i ∈ {0, 1}log2 m with i = {1, 2, . . . , n} constitute the input data string

X⃗ = x⃗1||x⃗2| . . . ||x⃗n. The k-th (k ∈ {1, 2, . . . ,m!}) random mapping rule makes the x⃗i map to x⃗′i, i.e., fk(x⃗i) = x⃗′i.

The binary bit value y⃗i ∈ {0, 1} will consist the output data string Y⃗ = y⃗1||y⃗2|| . . . ||y⃗n. Thus, a multivalue function



3

maps the input data string X⃗ ∈ {0, 1}n log2 m to the output data string Y⃗ ∈ {0, 1}n is the generalized one-way function

gf : X⃗ → Y⃗ if we have

y⃗i = gf(x⃗i) =


0, probability

1+cos[ 2πm fk(x⃗i)]
2 ,

1, probability
1−cos[ 2πm fk(x⃗i)]

2 ,

(S9)

where m is large enough.

A. Independent attack

Let us introduce three random variables X , Y and K. Let x⃗i ∈ {0, 1}log2 m, y⃗i ∈ {0, 1} and k ∈ {1, 2, . . . ,m!} be the
values of random variables X , Y and K, respectively. According to the definition of the generalized one-way function
above, the conditional probability distribution of the random variable Y can be given by

Pr[Y = y⃗i|(K = k,X = x⃗i)] =
Pr(Y = y⃗i,K = k,X = x⃗i)

Pr(K = k,X = x⃗i)
=

1 + (−1)y⃗i cos
[
2π
m fk(x⃗i)

]
2

, (S10)

where we have probability

Pr(K = k,X = x⃗i) =
1

m!

1

m
. (S11)

Therefore, the joint probability distribution of three random variables X , Y and K can be written as

Pr(Y = y⃗i,K = k,X = x⃗i) =
1 + (−1)y⃗i cos

[
2π
m fk(x⃗i)

]
2m(m!)

. (S12)

Obviously, for any integer m ≥ 2, one can obtain the following conclusions:

1

m

m−1∑
j=0

1± cos[2πj/m]

2
=

1

2
, (S13)

and

Pr[Y = y⃗i] =
∑
k,x⃗i

Pr[Y = y⃗i,K = k,X = x⃗i] =
1

2
,

Pr[Y = y⃗i|X = x⃗i] =
Pr(Y = y⃗i,X = x⃗i)

Pr(X = x⃗i)
=

∑
k Pr(Y = y⃗i,K = k,X = x⃗i)

Pr(X = x⃗i)
=

1

2
.

(S14)

Using Bayes’ theorem, we have

Pr[X = x⃗i|Y = y⃗i] =
Pr[Y = y⃗i|X = x⃗i]× Pr[X = x⃗i]

Pr[Y = y⃗i]

= Pr[X = x⃗i] =
1

m
.

(S15)

One can obtain the simplified form Pr[x⃗i|y⃗i] = Pr[x⃗i]. That is, the a posteriori probability x⃗i, given that the result
y⃗i is observed, is identical to the a priori probability x⃗i. Therefore, if the adversary considers the individual output
bits of the generalized one-way function, then all the inputs are equally likely. The adversary cannot obtain any

information of the input data X⃗ from the output data Y⃗ according to the generalized one-way function.

B. Joint attack

However, the adversary can also perform a joint analysis of multiple output bits or even entire output bit strings.
Here, we provide a direct analysis showing that multi-bit joint analysis approximates single-bit independent analysis

in terms of conditional probability and Shannon entropy. For the input data string X⃗ = x⃗1||x⃗2| . . . ||x⃗n and random

bit substrings x⃗i ∈ {0, 1}log2 m with i = {1, 2, . . . , n}, consider a string Y⃗d of output bits at any d positions and the

corresponding input string X⃗d, given the independence of random bit substrings x⃗i. Although the random mapping
rule is unknown, it is fixed, meaning that identical input bit strings x⃗i will produce identical states.
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1. Arbitrary two-bit

Considering that d = 2 and i = j, s, the conditional probability of output y⃗j ||y⃗s given input x⃗j ||x⃗s can be given by

Pr[(y⃗j ||y⃗s)|(x⃗j ||x⃗s)] =
1

m!

∑
k

1 + (−1)y⃗j cos
[
2π
m fk(x⃗j)

]
2

1 + (−1)y⃗s cos
[
2π
m fk(x⃗s)

]
2

. (S16)

If bit substrings x⃗j ̸= x⃗s, we have conditional probabilities

Pr[(11)|(x⃗j ||x⃗s)] = Pr[(00)|(x⃗j ||x⃗s)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u ̸=i

1 + cos 2πi
m

2

1 + cos 2πu
m

2

=
2m− 3

8(m− 1)
,

(S17)

and

Pr[(10)|(x⃗j ||x⃗s)] = Pr[(01)|(x⃗j ||x⃗s)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1− cos
[
2π
m fk(x⃗s)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u ̸=i

1 + cos 2πi
m

2

1− cos 2πu
m

2

=
2m− 1

8(m− 1)
.

(S18)

If bit substrings x⃗j = x⃗s, we have conditional probabilities

Pr[(11)|(x⃗j ||x⃗s)] = Pr[(00)|(x⃗j ||x⃗s)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

=
1

m

m−1∑
i=0

1 + cos 2πi
m

2

1 + cos 2πi
m

2

=
3

8
,

(S19)

and

Pr[(10)|(x⃗j ||x⃗s)] = Pr[(01)|(x⃗j ||x⃗s)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1− cos
[
2π
m fk(x⃗s)

]
2

=
1

m

m−1∑
i=0

1 + cos 2πi
m

2

1− cos 2πi
m

2

=
1

8
.

(S20)

Obviously, Pr[00] = Pr[01] = Pr[10] = Pr[11] = 1
4 . Therefore, the posterior probabilities can be written as

Pr[(x⃗j ||x⃗s)|(11)] = Pr[(x⃗j ||x⃗s)|(00)] =


2m−3

2(m−1)m2 , x⃗j ̸= x⃗s,

3
2m2 , x⃗j = x⃗s,

(S21)

and

Pr[(x⃗j ||x⃗s)|(10)] = Pr[(x⃗j ||x⃗s)|(01)] =


2m−1

2(m−1)m2 , x⃗j ̸= x⃗s,

1
2m2 , x⃗j = x⃗s.

(S22)
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Actually, we have the prior probabilities Pr[x⃗j ̸= x⃗s] = 1 − 1
m and Pr[x⃗j = x⃗s] =

1
m . For a sufficiently large m,

according to Eqs. (S21) and (S22), we have the conclusion that

Pr[(x⃗j ||x⃗s)|(y⃗j ||y⃗s)] ≃
1

m2
= Pr[x⃗j ||x⃗s]. (S23)

This implies that the posterior probability of the input data being x⃗j ||x⃗s, given the observed output y⃗j ||y⃗s, is nearly
identical to the prior probability of the input being x⃗j ||x⃗s.
Given the output data y⃗j ||y⃗s, the Shannon entropy of the input data x⃗j ||x⃗s can be given by

H[(x⃗j ||x⃗s)|(00)] = H[(x⃗j ||x⃗s)|(11)] = −2m− 3

2m
log2

2m− 3

2(m− 1)m2
− 3

2m
log2

3

2m2

= 2 log2m−
(
1− 3

2m

)
log2

2m− 3

2(m− 1)
− 3

2m
log2

3

2

≃ 2 log2m = H[x⃗j ||x⃗s],

H[(x⃗j ||x⃗s)|(01)] = H[(x⃗j ||x⃗s)|(10)] = −2m− 1

2m
log2

2m− 1

2(m− 1)m2
− 1

2m
log2

1

2m2

= 2 log2m−
(
1− 1

2m

)
log2

2m− 1

2(m− 1)
+

1

2m

≃ 2 log2m = H[x⃗j ||x⃗s],

(S24)

where we assume that m is big enough.

2. Arbitrary three-bit

Considering d = 3 and i = j, s, t, the probability of output y⃗j ||y⃗s||y⃗t given input x⃗j ||x⃗s||x⃗t can be given by

Pr[(y⃗j ||y⃗s||y⃗t)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + (−1)y⃗j cos
[
2π
m fk(x⃗j)

]
2

1 + (−1)y⃗s cos
[
2π
m fk(x⃗s)

]
2

1 + (−1)y⃗t cos
[
2π
m fk(x⃗t)

]
2

.

(S25)
If x⃗j ̸= x⃗s ̸= x⃗t, we have conditional probabilities Pr[(111)|(x⃗j ||x⃗s||x⃗t)] = Pr[(000)|(x⃗j ||x⃗s||x⃗t)],

Pr[(000)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1 + cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)(m− 2)

m−1∑
i=0

m−1∑
u=0,u̸=i

m−1∑
v=0,v ̸=i,v ̸=u

1 + cos 2πi
m

2

1 + cos 2πu
m

2

1 + cos 2πv
m

2

=
2m2 − 9m+ 10

16(m− 1)(m− 2)
,

(S26)

and Pr[(001)|(x⃗j ||x⃗s||x⃗t)] = Pr[(010)|(x⃗j ||x⃗s||x⃗t)] = Pr[(011)|(x⃗j ||x⃗s||x⃗t)] = Pr[(100)|(x⃗j ||x⃗s||x⃗t)] =
Pr[(101)|(x⃗j ||x⃗s||x⃗t)] = Pr[(110)|(x⃗j ||x⃗s||x⃗t)],

Pr[(001)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1− cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)(m− 2)

m−1∑
i=0

m−1∑
u=0,u̸=i

m−1∑
v=0,v ̸=i,v ̸=u

1 + cos 2πi
m

2

1 + cos 2πu
m

2

1− cos 2πv
m

2

=
2m2 − 5m+ 2

16(m− 1)(m− 2)
,

(S27)
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If x⃗j = x⃗s ̸= x⃗t, we have conditional probabilities Pr[(111)|(x⃗j ||x⃗s||x⃗t)] = Pr[(000)|(x⃗j ||x⃗s||x⃗t)],

Pr[(000)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1 + cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u̸=i

1 + cos 2πi
m

2

1 + cos 2πi
m

2

1 + cos 2πu
m

2

=
3m− 5

16(m− 1)
,

(S28)

and Pr[(110)|(x⃗j ||x⃗s||x⃗t)] = Pr[(001)|(x⃗j ||x⃗s||x⃗t)],

Pr[(001)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1− cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u̸=i

1 + cos 2πi
m

2

1 + cos 2πi
m

2

1− cos 2πu
m

2

=
3m− 1

16(m− 1)
,

(S29)

and Pr[(010)|(x⃗j ||x⃗s||x⃗t)] = Pr[(011)|(x⃗j ||x⃗s||x⃗t)] = Pr[(100)|(x⃗j ||x⃗s||x⃗t)] = Pr[(101)|(x⃗j ||x⃗s||x⃗t)],

Pr[(010)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1− cos
[
2π
m fk(x⃗s)

]
2

1 + cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u̸=i

1 + cos 2πi
m

2

1− cos 2πi
m

2

1 + cos 2πu
m

2

=
1

16
.

(S30)

If x⃗j = x⃗t ̸= x⃗s, we have conditional probabilities Pr[(111)|(x⃗j ||x⃗s||x⃗t)] = Pr[(000)|(x⃗j ||x⃗s||x⃗t)],

Pr[(000)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1 + cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u̸=i

1 + cos 2πi
m

2

1 + cos 2πu
m

2

1 + cos 2πi
m

2

=
3m− 5

16(m− 1)
,

(S31)

and Pr[(101)|(x⃗j ||x⃗s||x⃗t)] = Pr[(010)|(x⃗j ||x⃗s||x⃗t)],

Pr[(010)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1− cos
[
2π
m fk(x⃗s)

]
2

1 + cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u̸=i

1 + cos 2πi
m

2

1− cos 2πu
m

2

1 + cos 2πi
m

2

=
3m− 1

16(m− 1)
,

(S32)
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and Pr[(001)|(x⃗j ||x⃗s||x⃗t)] = Pr[(011)|(x⃗j ||x⃗s||x⃗t)] = Pr[(100)|(x⃗j ||x⃗s||x⃗t)] = Pr[(110)|(x⃗j ||x⃗s||x⃗t)],

Pr[(001)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1− cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u̸=i

1 + cos 2πi
m

2

1 + cos 2πu
m

2

1− cos 2πi
m

2

=
1

16
.

(S33)

If x⃗j ̸= x⃗s = x⃗t, we have conditional probabilities Pr[(111)|(x⃗j ||x⃗s||x⃗t)] = Pr[(000)|(x⃗j ||x⃗s||x⃗t)],

Pr[(000)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1 + cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u̸=i

1 + cos 2πu
m

2

1 + cos 2πi
m

2

1 + cos 2πi
m

2

=
3m− 5

16(m− 1)
,

(S34)

and Pr[(011)|(x⃗j ||x⃗s||x⃗t)] = Pr[(100)|(x⃗j ||x⃗s||x⃗t)],

Pr[(100)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1− cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1 + cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u̸=i

1− cos 2πu
m

2

1 + cos 2πi
m

2

1 + cos 2πi
m

2

=
3m− 1

16(m− 1)
,

(S35)

and Pr[(001)|(x⃗j ||x⃗s||x⃗t)] = Pr[(011)|(x⃗j ||x⃗s||x⃗t)] = Pr[(100)|(x⃗j ||x⃗s||x⃗t)] = Pr[(110)|(x⃗j ||x⃗s||x⃗t)],

Pr[(001)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1− cos
[
2π
m fk(x⃗t)

]
2

=
1

m(m− 1)

m−1∑
i=0

m−1∑
u=0,u̸=i

1 + cos 2πu
m

2

1 + cos 2πi
m

2

1− cos 2πi
m

2

=
1

16
.

(S36)

If x⃗j = x⃗s = x⃗t, we have conditional probabilities Pr[(111)|(x⃗j ||x⃗s||x⃗t)] = Pr[(000)|(x⃗j ||x⃗s||x⃗t)],

Pr[(000)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1 + cos
[
2π
m fk(x⃗t)

]
2

=
1

m

m−1∑
i=0

1 + cos 2πi
m

2

1 + cos 2πi
m

2

1 + cos 2πi
m

2

=
5

16
,

(S37)
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and Pr[(001)|(x⃗j ||x⃗s||x⃗t)] = Pr[(010)|(x⃗j ||x⃗s||x⃗t)] = Pr[(011)|(x⃗j ||x⃗s||x⃗t)] = Pr[(100)|(x⃗j ||x⃗s||x⃗t)] =
Pr[(101)|(x⃗j ||x⃗s||x⃗t)] = Pr[(110)|(x⃗j ||x⃗s||x⃗t)],

Pr[(001)|(x⃗j ||x⃗s||x⃗t)] =
1

m!

∑
k

1 + cos
[
2π
m fk(x⃗j)

]
2

1 + cos
[
2π
m fk(x⃗s)

]
2

1− cos
[
2π
m fk(x⃗t)

]
2

=
1

m

m−1∑
i=0

1 + cos 2πi
m

2

1 + cos 2πi
m

2

1− cos 2πi
m

2

=
1

16
.

(S38)

Obviously, Pr[000] = Pr[001] = Pr[010] = Pr[011] = Pr[100] = Pr[101] = Pr[110] = Pr[111] = 1
8 . Therefore, the

conditional probabilities can be written as Pr[(x⃗j ||x⃗s||x⃗t)|(111)] = Pr[(x⃗j ||x⃗s||x⃗t)|(000)],

Pr[(x⃗j ||x⃗s||x⃗t)|(000)] =



2m2−9m+10
2(m−1)(m−2)m3 , x⃗j ̸= x⃗s ̸= x⃗t,

3m−5
2(m−1)m3 , x⃗j = x⃗s ̸= x⃗t,

3m−5
2(m−1)m3 , x⃗j = x⃗t ̸= x⃗s,

3m−5
2(m−1)m3 , x⃗j ̸= x⃗s = x⃗t,

5
2m3 , x⃗j = x⃗s = x⃗t,

(S39)

and Pr[(x⃗j ||x⃗s||x⃗t)|(001)] = Pr[(x⃗j ||x⃗s||x⃗t)|(110)],

Pr[(x⃗j ||x⃗s||x⃗t)|(001)] =



2m2−5m+2
2(m−1)(m−2)m3 , x⃗j ̸= x⃗s ̸= x⃗t,

3m−1
2(m−1)m3 , x⃗j = x⃗s ̸= x⃗t,

1
2m3 , x⃗j = x⃗t ̸= x⃗s,

1
2m3 , x⃗j ̸= x⃗s = x⃗t,

1
2m3 , x⃗j = x⃗s = x⃗t,

(S40)

and Pr[(x⃗j ||x⃗s||x⃗t)|(010)] = Pr[(x⃗j ||x⃗s||x⃗t)|(101)],

Pr[(x⃗j ||x⃗s||x⃗t)|(010)] =



2m2−5m+2
2(m−1)(m−2)m3 , x⃗j ̸= x⃗s ̸= x⃗t,

1
2m3 , x⃗j = x⃗s ̸= x⃗t,

3m−1
2(m−1)m3 , x⃗j = x⃗t ̸= x⃗s,

1
2m3 , x⃗j ̸= x⃗s = x⃗t,

1
2m3 , x⃗j = x⃗s = x⃗t,

(S41)
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and Pr[(x⃗j ||x⃗s||x⃗t)|(011)] = Pr[(x⃗j ||x⃗s||x⃗t)|(100)],

Pr[(x⃗j ||x⃗s||x⃗t)|(100)] =



2m2−5m+2
2(m−1)(m−2)m3 , x⃗j ̸= x⃗s ̸= x⃗t,

1
2m3 , x⃗j = x⃗s ̸= x⃗t,

1
2m3 , x⃗j = x⃗t ̸= x⃗s,

3m−1
2(m−1)m3 , x⃗j ̸= x⃗s = x⃗t,

1
2m3 , x⃗j = x⃗s = x⃗t.

(S42)

Actually, we have the prior probabilities Pr[x⃗j ̸= x⃗s ̸= x⃗t] =
(m−1)(m−2)

m2 and Pr[x⃗j = x⃗s ̸= x⃗t] = Pr[x⃗j = x⃗t ̸= x⃗s] =

Pr[x⃗j ̸= x⃗s = x⃗t] =
m−1
m2 and Pr[x⃗j = x⃗s = x⃗t] =

1
m2 . For a sufficiently large m, we have the conclusion that

Pr[(x⃗j ||x⃗s||x⃗t)|(yj ||ys||yt)] ≃
1

m3
= Pr[x⃗j ||x⃗s||x⃗t]. (S43)

Given the output data yj ||ys||yt, the Shannon entropy of the input data can be given by H[(x⃗j ||x⃗s||x⃗t)|(000)] =
H[(x⃗j ||x⃗s||x⃗t)|(111)],

H[(x⃗j ||x⃗s||x⃗t)|(000)] = −2m2 − 9m+ 10

2m2
log2

2m2 − 9m+ 10

2(m− 1)(m− 2)m3
− 3(3m− 5)

2m2
log2

3m− 5

2(m− 1)m3
− 5

2m2
log2

5

2m3

≃ 3 log2m = H[x⃗j ||x⃗s||x⃗t],
(S44)

and H[(x⃗j ||x⃗s||x⃗t)|(001)] = H[(x⃗j ||x⃗s||x⃗t)|(010)] = H[(x⃗j ||x⃗s||x⃗t)|(011)] = H[(x⃗j ||x⃗s||x⃗t)|(100)] =
H[(x⃗j ||x⃗s||x⃗t)|(101)] = H[(x⃗j ||x⃗s||x⃗t)|(110)],

H[(x⃗j ||x⃗s||x⃗t)|(001)] = −2m2 − 5m+ 2

2m2
log2

2m2 − 5m+ 2

2(m− 1)(m− 2)m3
− (3m− 1)

2m2
log2

3m− 1

2(m− 1)m3
− 2m− 1

2m2
log2

1

2m3

≃ 3 log2m = H[x⃗j ||x⃗s||x⃗t].
(S45)

3. Arbitrary d-bit

From the above calculation, several characteristics can be discerned. First, if the input bit substrings x⃗i are not
identical, the conditional (posterior) probability suggests that the output string is close to a random guess outcome.
Second, if the input bit substrings x⃗i are all identical, the conditional (posterior) probability is maximized when the
output data string is either all zeros y⃗i = 0 or all ones y⃗i = 1. Third, if the input bit substrings x⃗i are identical, the
conditional (posterior) probability is minimized when the output data string contains an equal number of zeros and
ones.

For d identical input bit substrings x⃗i = x⃗, the maximum conditional probability Pr[(11 · · · 1)|(x⃗||x⃗|| · · · ||x⃗)] =
Pr[(00 · · · 0)|(x⃗||x⃗|| · · · ||x⃗)] can written as

Pr[(00 · · · 0)|(x⃗||x⃗|| · · · ||x⃗)] = 1

m!

∑
k

{
1 + cos

[
2π
m fk(x⃗)

]
2

}d

=
1

m

m−1∑
i=0

(
1 + cos 2πi

m

2

)d

=
1

2π

∫ 2π

0

(
1 + cos t

2

)d

dt

= 2F1

(
1

2
,−2d; 1; 2

)
≤ 1

2
,

(S46)
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where 2F1 (a, b; c; z) is the Gaussian hypergeometric function and we utilized the conversion between integration and
summation.

For d identical input bit substrings x⃗i = x⃗, the minimum conditional probability is that the number of bits of 0 in
the output string is the closest to the number of bits of 1. If d is even, the minimum conditional probability can be
given by

Pr[(00 · · · 0||11 · · · 1)|(x⃗||x⃗|| · · · ||x⃗)] = 1

m!

∑
k

{
1 + cos

[
2π
m fk(x⃗)

]
2

}d/2{
1− cos

[
2π
m fk(x⃗)

]
2

}d/2

=
1

m

m−1∑
i=0

(
1 + cos 2πi

m

2

)d/2(
1− cos 2πi

m

2

)d/2

=
1

2π

∫ 2π

0

(
1 + cos t

2

)d/2(
1− cos t

2

)d/2

dt

=
d!

22d
(
d
2 !
)2 ≤ 1

22d−1
.

(S47)

If d is odd, the minimum conditional probability can be given by

Pr[(00 · · · 0||11 · · · 1)|(x⃗||x⃗|| · · · ||x⃗)] = 1

m!

∑
k

{
1 + cos

[
2π
m fk(x⃗)

]
2

}(d+1)/2{
1− cos

[
2π
m fk(x⃗)

]
2

}(d−1)/2

=
1

m

m−1∑
i=0

(
1 + cos 2πi

m

2

)(d+1)/2(
1− cos 2πi

m

2

)(d−1)/2

=
1

2π

∫ 2π

0

(
1 + cos t

2

)(d+1)/2(
1− cos t

2

)(d−1)/2

dt

=
(d− 1)!

22d−1
(
d−1
2 !
)2 ≤ 1

22d−1
.

(S48)

Through straightforward analysis, we find that the conditional probability of the output bit string corresponding
to the other input bit string cases must be between the maximum and minimum values of the above identical input
bit substrings case. Therefore, we obtain the following inequality:

1

22d−1
≤ Pr[Y⃗d|X⃗d] ≤

1

2
. (S49)

Note that, the prior probability that all d input bit substrings x⃗i are identical is m−d, which is very small when both
m and d are large. In many instances, the conditional probability closely approximates the probability of a random

guess, that is, Pr[Y⃗d|X⃗d] ≈ 2−d.
According to Bayes’ theorem, we have

Pr[X⃗d|Y⃗d] = Pr[Y⃗d|X⃗d]Pr[X⃗d]

Pr[Y⃗d]
≤

1
2m

−d

2−d = 2d−1

md ≃ 1
md = Pr[X⃗d],

Pr[X⃗d|Y⃗d] = Pr[Y⃗d|X⃗d]Pr[X⃗d]

Pr[Y⃗d]
≥ 2−2d+1m−d

2−d = 2−d+1

md ≃ 1
md = Pr[X⃗d],

(S50)

where we assume that m is sufficiently large, for example, m = 210. Therefore, we conclude that Pr[X⃗|Y⃗ ] ∼ Pr[X⃗].
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