Paper 2024/1279

Improved Polynomial Division in Cryptography

Kostas Kryptos Chalkias, Mysten Labs
Charanjit Jutla, IBM Research - Thomas J. Watson Research Center
Jonas Lindstrom, Mysten Labs
Varun Madathil, North Carolina State University
Arnab Roy, Mysten Labs
Abstract

Several cryptographic primitives, especially succinct proofs of various forms, transform the satisfaction of high-level properties to the existence of a polynomial quotient between a polynomial that interpolates a set of values with a cleverly arranged divisor. Some examples are SNARKs, like Groth16, and polynomial commitments, such as KZG. Such a polynomial division naively takes $O(n \log n)$ time with Fast Fourier Transforms, and is usually the asymptotic bottleneck for these computations. Several works have targeted specific constructions to optimize these computations and trade-off one-time setup costs with faster online computation times. In this paper, we present a unified approach to polynomial division related computations for a diverse set of schemes. We show how our approach provides a common abstract lens which recasts and improves existing approaches. Additionally, we present benchmarks for the Groth16 and the KZG systems, illustrating the significant practical benefits of our approach in terms of speed, memory, and parallelizability. We get a speedup of $2\times$ over the state-of-the-art in computing all openings for KZG commitments and a speed-up of about $2-3\%$ for Groth16 proofs when compared against the Rust Arkworks implementation. Although our Groth16 speedup is modest, our approach supports twice the number of gates as Arkworks and SnarkJS as it avoids computations at higher roots of unity. Conversely this reduces the need for employing larger groups for bigger circuits. For example, our approach can support $2^{28}$ gates with BN254, as compared to $2^{27}$ for coset-based approaches, without sacrificing computational advantages. Our core technical contributions are novel conjugate representations and compositions of the derivative operator and point-wise division under the Discrete Fourier Transform. These allow us to leverage l'Hôpital's rule to efficiently compute polynomial division, where in the evaluation basis such divisions maybe of the form $0/0$. Our techniques are generic with potential applicability to many existing protocols.

Note: Added Inner Product Arguments, and detailed examples.

Metadata
Available format(s)
PDF
Category
Cryptographic protocols
Publication info
Preprint.
Keywords
Vector CommitmentsSNARKsZero-KnowledgeMathematical foundations
Contact author(s)
kostas @ mystenlabs com
csjutla @ us ibm com
jonas @ mystenlabs com
vrmadath @ ncsu edu
arnabr @ gmail com
History
2024-10-18: revised
2024-08-13: received
See all versions
Short URL
https://ia.cr/2024/1279
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2024/1279,
      author = {Kostas Kryptos Chalkias and Charanjit Jutla and Jonas Lindstrom and Varun Madathil and Arnab Roy},
      title = {Improved Polynomial Division in Cryptography},
      howpublished = {Cryptology {ePrint} Archive, Paper 2024/1279},
      year = {2024},
      url = {https://eprint.iacr.org/2024/1279}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.