Improved Polynomial Division in Cryptography

Kostas Kryptos Chalkias', Charanjit Jutla?, Jonas Lindstrgm®, Varun Madathil®, and
Arnab Roy!

"Mysten Labs, {kostas, jonas, arnab}@mystenlabs.com
2IBM Research, csjutla@us.ibm.com
3North Carolina State University, vrmadath@ncsu.edu

Abstract

Several cryptographic primitives, especially succinct proofs of various forms, transform
the satisfaction of high-level properties to the existence of a polynomial quotient between
a polynomial that interpolates a set of values with a cleverly arranged divisor. Some
examples are SNARKSs, like Groth16, and polynomial commitments, such as KZG. Such
a polynomial division naively takes O(nlogn) time with Fast Fourier Transforms, and is
usually the asymptotic bottleneck for these computations.

Several works have targeted specific constructions to optimize these computations and
trade-off one-time setup costs with faster online computation times. In this paper, we
present a unified approach to polynomial division related computations for a diverse set
of schemes. We show how our approach provides a common abstract lens which recasts
and improves existing approaches. Additionally, we present benchmarks for the Groth16
and the KZG systems, illustrating the significant practical benefits of our approach in
terms of speed, memory, and parallelizability. We get a speedup of 2x over the state-of-
the-art in computing all openings for KZG commitments and a speed-up of about 2 — 3%
for Groth16 proofs when compared against the Rust Arkworks implementation. Although
our Grothl6 speedup is modest, our approach supports twice the number of gates as
Arkworks and SnarkJS as it avoids computations at higher roots of unity. Conversely this
reduces the need for employing larger groups for bigger circuits.

Our core technical contributions are novel conjugate representations and compositions
of the derivative operator and point-wise division under the Discrete Fourier Transform.
These allow us to leverage 'Hopital’s rule to efficiently compute polynomial division,
where in the evaluation basis such divisions maybe of the form 0/0. As a concrete ex-
ample, our technique allows applying a Toeplitz-matrix transform to a vector of elliptic
curve group elements using only nlogn elliptic-curve scalar multiplcations, whereas ear-
lier techniques can at best achieve %nlogn complexity. Our techniques are generic with
potential applicability to many existing protocols.

1 Introduction

The use of polynomial division in cryptography has been explored extensively, particularly
in the context of error-correcting codes, secure multiparty computation, and zero-knowledge
proofs. We start with an overview of notable works that have leveraged polynomial division
in these and related areas.

Error-Correcting Codes. One of the foundational applications of polynomial division
in cryptography is in the construction and analysis of error-correcting codes. Reed-Solomon
codes and the more general BCH codes, are a class of error-correcting codes that rely heavily on
polynomial division for encoding and decoding processes. These codes have found widespread

use in digital communications and data storage systems due to their ability to correct multiple
erTors.

In 1965, Forney [For65] made the decoding of BCH codes more efficient using polynomial
division, and in 1986, Berlekamp and Welch [WB] further enhanced the decoding algorithms
for Reed-Solomon codes, again utilizing polynomial division. These works remain a corner-
stone in the field of error correction and has influenced subsequent research in both theoretical
and applied cryptography.

Secure Multiparty Computation (MPC). Polynomial division also plays a critical role
in secure multiparty computation (MPC), where multiple parties compute a function over
their inputs while keeping those inputs private. The seminal work by Shamir (1979) [Sha79]
introduced secret sharing schemes, where a secret is divided into shares using polynomial
interpolation. Polynomial division, as in the Berlekamp-Welch decoder, is used to reconstruct
the secret when a sufficient number of shares are combined.

Goldreich, Micali, and Wigderson (1987) [MGW8T7] extended this idea to develop protocols
for secure computation. Their work laid the groundwork for many modern MPC protocols,
including those that ensure malicious security, such as that described by Ben-Or, Goldwasser,
and Wigderson (1988) [BOGW19] using Berlekamp-Welch decoding.

Zero-Knowledge Proofs. Zero-knowledge proofs (ZKPs) are another domain where poly-
nomial division has been applied. Polynomial commitment schemes, which allow a prover to
commit to a polynomial and later prove properties about it without revealing the polynomial
itself, often utilize polynomial division. Kate, Zaverucha, and Goldberg [KZG10a] introduced
a polynomial commitment scheme based on bilinear pairings that uses polynomial division for
efficient verification of polynomial evaluations.

This approach has been extended in various zero-knowledge succinct non-interactive ar-
guments of knowledge (zk-SNARKS) systems. For example, the Pinocchio protocol by Parno
et al. [PHGR16] and the Grothl6 [Grol6a] protocol by Groth employ polynomial division
techniques to ensure the soundness and efficiency of their proof systems.

1.1 Owur Contributions

1. We provide a novel formal linear algebraic framework for doing polynomial division effi-
ciently. We comprehensively cover cases where the evaluation basis may have a 0/0 form,
by leveraging I’'Hopital’s theorem. In particular, we derive novel conjugate representations
of the derivative operator under the discrete Fourier transform.

2. We provide novel algorithmic approaches for two widely used cryptographic constructions:
KZG vector commitments and Groth16 zkSNARKs. For both constructions, we achieve
more elegant representations than similar other works in the literature which combine
known techniques in a clever way (see below for details).

3. We evaluate, benchmark,! and compare our algorithms against the best optimizations in
the literature that we know of and achieve competitive efficiency in all cases. We also
achieve qualitative advancement and substantial practical benefits in some cases, including
better amenability to parallelization.

These algorithmic advances are also applicable to several other proof systems as well, such
as STARK [BBHR18], Plonk [GWC19], Aurora [BCR™19], Marlin [CHM™20], Spartan [Set20],
and so on, which use polynomial divisions extensively.

'Our benchmarks are open-sourced here: https://github.com/MystenLabs/polydiv

https://github.com/MystenLabs/polydiv

1.2 Comparison with Previous Work

There have been many recent works that have shown efficient polynomial division in the
above mentioned cryptographic applications. The most salient of these that have perfor-
mance comparable to our contribution are detailed below. However, we emphasize that while
the benchmarks we obtain offer practical benefits, our main focus is on developing a compre-
hensive linear-algebraic, and more precisely a linear-operator based theory for obtaining fast
algorithms. We now briefly describe two competing algorithms (in their respective crypto-
graphic applications):

KZG Commitments. Feist and Khovratovich [FK23] present a construction to compute n
KZG proofs in O(nlogn) time. This is achieved by employing a few well-known techniques in
a clever and judicious manner: (a) the bi-variate polynomial % has a representation
such that the coefficients (arranged in a matrix) is a Toeplitz matrix 7" formed from coefficients
of f, (b) The Toeplitz form is easily extended to be a circulant matrix, which then allows
multiplication of T into given powers of a secret X = s (hidden in the exponent of a hard
group) to be just a convolution, which can be computed in time O(nlogn), (c) the evaluations
on different values of Y can be computed using known algorithms for computing a polynomial
at multiple points. More details can be found in Section 4.4. While this is an innovative use
of known techniques, our approach allows for the possibility of further practical optimization
as we obtain closed form representations for evaluating all proofs simultaneously.

Grothl6 SNARK. Popular implementations of the Groth16 SNARK, such as SnarkJS
[SNA] and Arkworks compute f(X)/t(X), where f(X) is a multiple of ¢(X), and ¢(X) has
roots at roots of unity, using a twisted FFT [Ber07]. For more details, see Section 5.3. We
show that this can instead be computed using the derivative operator, the main theme of this
work.

1.3 Paper Organization

We start with preliminaries in Section 2 to explain all the notations and background con-
cepts. Then we give a technical overview and explain linear algebraic tools and techniques
in Section 3. Then we describe our approach and algorithms, compare with existing works
and provide evaluation and benchmarks for two cryptographic constructions: KZG vector
commitments in Section 4, and Groth16 SNARKSs in Section 5. Finally, we briefly describe a
couple of more applications of our technique in Section 6.

2 Preliminaries

Notations. In the subsequent sections A is our security parameter. G and Go are a group
of prime order p, and e : G; X Gy — G is a bilinear pairing [MVO91, Jou00]. In this work,
we present all group operations using additive notation i.e., [a]; represents a group element
in G, [EHK'13].

The primitive n-th root of unity in (some finite extension field of) Z, is represented by
w. Typically, p and n are chosen so that this root of unity is in Z, itself. We denote DFT as
the Vandermonde matrix with rows induced by powers of w. We will follow the convention
that rows and columns start with the index 0. The i-th entry of a vector ¢ is denoted as (¥);,
and the (7, j)-th entry of a matrix M is denoted as (M); ;. The transpose of a matrix M is
denoted MT. In particular (DFT);; = w¥. The Hadamard product, or entry-wise product of

two vectors @ and b is denoted @o b. The notation pow(z) denotes the vector of powers of a:
1zz? 21T,

Fourier Transforms. For any n x n matrix A, we will denote its similarity transform under
DFT by A= (DFT-A-DFT~!), also called the conjugate of A. A square matrix will be called
sparse if it has only O(n) non-zero entries. A sparse matrix will be called star-shaped if its
only non-zero entries are the diagonal, k-th row and k-th column, for some k. We will leverage
the fact that sparse matrices with closed form entries can be multiplied with a vector in O(n)
time. We will also use the fact that, when n is a power of 2, multiplication of a vector by
DFT and DFT~! matrices can be performed in O(nlogn) time by the Fast Fourier Transform
(FFT) algorithm [CT65]. More precisely, the Cooley-Tukey FFT algorithm is an in-place
butterfly algorithm requiring logn rounds, with each round requiring n/2 butterfly-steps. A
butterfly step takes two inputs a,b and outputs a + 7-b and a — 7 - b, for some scalar 7. Note
that a,b can be in an elliptic-curve group of order p. Then 7 is typically in the multiplicative
group of scalars Z;. As can be seen, the total number of (elliptic-curve) scalar-multiplications
is then logn * (n/2) (in addition to nlogn group additions/subtractions). The inverse FFT
can also be computed in a similar way, by just using w™! in place of w. It’s worth noting that
the Cooley-Tukey in-place algorithm produces the output in an index bit-reversed fashion.
So, if the same algorithm (i.e. using the butterfly-step mentioned above) is to be used to
compute the inverse , one must permute the input and output array when computing the
inverse FFT.

Polynomial and Vector Commitment Schemes. In a polynomial commitment scheme

[KZG10a] the prover commits to a polynomial f and later opens it to f(x;) for some x;. A poly-

nomial commitment scheme consists of the following algorithms: (Setup, Commit, Open, Verify).

A polynomial commitment scheme can be thought of as a vector commitment scheme where

the vector committed to are the evaluations of the polynomial. In this context there are two

more algorithms - UpdateCom and UpdateOpen. We present the syntax for vector commit-
ments below, since that is the focus of our work:

e Setup(A\) — pp: generates public parameters for the commitment scheme.

e Commit(pp, ¥) — C: This algorithm takes as input the vector ¥ and outputs a commit C'.

e Open(pp,U,i) — m;: This algorithm takes as input the vector ¢ and an index i and outputs
a proof m; that proves that the value at index i is (7);.

e Verify(pp, C,;, (¥);, i) — b: This algorithm takes as input the commitment C, the value at
position ¢ and verifies if the proof of opening is valid. This algorithm outputs a bit 1 if it
verifies.

e UpdateCom(pp, C,i,v},v;) — C": This algorithm takes as input the commitment C, the
original value at index ¢ and the new value at index ¢ and outputs a new commitment C’
with the value at position ¢ updated to v}.

e UpdateOpen(pp, 7}, 5, 7, vj, v;) — 7;: This algorithm takes as input the proof ;, the original
value at index i - v; and the new value v] and outputs a new proof 773». The algorithm to
update the proof of opening in the case ¢ = j and ¢ # j may be different.

Succinct Non-Interactive Arguments of Knowledge - SNARKs. SNARKSs are non-

interactive systems with short proofs that enable verifying NP computations with substantially

lower complexity than that required for classical NP verification. A SNARK is typically

described by three algorithms:

e Setup(\) — crs is a setup algorithm that is typically run by a trusted party. This algorithm
outputs a common random string crs.

e Prove(crs, x,w) — m is run by the prover and takes as input a statement z, a witness w and
outputs a succinct proof .

e Verify(crs,z,m) — b is run by the verifier and takes as input the crs, the statement z and a

proof m and outputs 1 if the proof is valid.

Most constructions and implementations of SNARKs [PHGR16, Lip13, DFGK14, Grol6b,
GMNO18] make use of quadratic programs (introduced in [GGPR13]). This framework allows
to build SNARKSs for statements that can be represented as an arithmetic or boolean circuit.
In this work we focus on the Grothl6 [Grol6b] construction. We will present more details on
the same in Section 5.1.

2.1 Linear Operators

A linear operator ® : V' — V on a vector space V over a field F satisfies the following two
properties: (i) ®() + o) = ®(71) + P(¥2), and (ii) for all ¢ € F, &(c-¥) = ¢- &(¥). In
this work we will be interested in linear operators on vector space of fixed degree (say, n — 1)
polynomials over a field F. Thus, any such linear operator can be represented by a n x n
matrix. One interesting operator we analyze is CDiv,, which transforms a polynomial f to

w. Let’s first check that this is indeed a linear operator by noting that CDiv,(f1 + f2)

= (f1+f2)(§)(__(afl+f2)(a) = CDivy(f1) + CDivy(f2), and also CDivg(c- f) = ¢ - CDiv,(f).

The particular matrix representation of this linear operator depends on the basis we choose
for degree n — 1 polynomials, e.g. the power basis consisting of 1,z, 22, ..., or the FFT or
evaluation basis consisting of the power basis transformed by the vandermonde matrix V of
n-th roots of unity (in some finite extension field of F). We denote these roots of unity by w*
(k €10..n —1]).

Of particular interest are the linear operators CDiv_, which by abuse of notation we will

just denote by CDivy. In the evaluation basis, this operator is then just taking f(w’) to
S —f(wk)

wl —wk
for polynomials over arbitrary fields (see Theorem 1), this is same as f'(w?).

While in the power basis the linear operator’s matrix representation will be called CDivy,
itself, in the evaluation basis the matrix representation will be called EDivy. Thus, EDivy =
ﬁ/k = DFT - CDiv;, - DFT™!. A little calculation shows that EDivy, is a sparse star-shaped
matrix, and moreover it is intimately related to the derivative linear operator — see Theorem 1
for details.

. For the special case of j = k the above expression is 0/0, but by 'Hopital’s Rule

3 Technical Overview

All polynomial operations, such as evaluation, addition, subtraction, multiplication, and di-
vision can be represented as linear algebraic operations on both the coefficient space, that
is, the vector of coefficients, and the evaluation space, that is, the vector of evaluations on a
predefined vector of points.

Simple addition, subtraction, and scaling of polynomials have direct correspondence be-
tween the coefficient space and the evaluation space. The standard high-school method of
multiplying two polynomials given in coefficient representation is O(n?). However, it is much
more straightforward in the evaluation space, where the corresponding operation is just point-
wise multiplication. This observation is leveraged in the O(nlogn) Fast Fourier Transform
(FFT) algorithm for multiplying two polynomials.

3.1 Division in the Evaluation Space

The point-wise multiplication method can be extended to division as well, with a couple of
remarks. Firstly, the point-wise division would correspond to polynomial division only in the
case the denominator polynomial exactly divides the numerator polynomial. Secondly, the

point-wise division fails to work if both the numerator and denominator evaluations are 0 at
least at one evaluation point.

Under the assumption that the first condition holds, we extend the FFT-based method
of dividing polynomials using the ’'Hopital’s rule. While I’'Hopital’s rule is well-known for
functions over complex numbers, it also holds for polynomials in arbitrary fields. Although
this is also known, we give a proof in Appendix A for completeness.

A high level template for division in this framework is as follows. First observe that the
derivative operation is a linear shift and scale operation in the coefficient space, based on
%aixi = ja;z'~ 1. Let D stand for the derivative operator, as formally described in Table 1.
Let the operation required be f(X)/g(X):

1. Compute f'=Df and § = D7 in O(n) time.
2. Compute ¥ = DFTf, @ = DFT§, ¢ = DFTf’, & = DFT{, in O(nlogn) time.
3. Collect point-wise divisions of ¥ with @. For points of 0/0 form collect the corresponding

point-wise division from the derivative evaluations o', w'.

4. Apply DFT! to this synthesized vector to compute the quotient in coefficient space.

Note that the above approach fails if (@); = (@'); = 0 at some index i. A sufficient con-
dition to prevent this is to ensure that g(X) is square-free. This is because in the square-free
case g(X) and ¢’(X) will not have a common root, in particular, any w’. For the applications
we consider in this paper the denominator polynomial will always be square-free.

Let us now view these operations through a linear algebra lens. Recall that pow(x) denotes
the vector [1 z 2 --- 2" 1] where n — 1 is an upper bound on the polynomial degrees. The
evaluation of a polynomial f(X) at a point can be represented equivalently as:

f(x) = pow(z)' f = péw(z) DFT 7

Now observe that if deg(f) < (n —2), then X f(X) is a polynomial that shifts the coefficients
from 2 to a'*! for each 4. This is a linear transform in the coefficient space, represented by
the off-diagonal matrix M in Table 1. Equivalently:

of(x) = péw(z) "Mf = pow(z) M- DFT '

We can generalize this with the observation that multiplying powers of x corresponds to
further applications of the M operator. For example, z2f(z) = p6w(x)Tl\/I2f, o atf(x) =
pow(z) T M? f: and so on, for suitable restrictions on the degree of f. Carrying this to further
generalization, we have that p(z)f(z) = pow(z)T p(M)f, with the condition that deg(p) +
deg(f) < (n—1).

Carrying this operation in reverse presents some problems. Observe that M is not full-
ranked. As a result, writing f(z)/z as péw(z) TM~Lf doesn’t work as M~ does not exist.

_ k
Instead let’s attempt to represent the quotient %,

nomial. Note that we can write f(w¥) = pow(z) Eqy - DFTf_; where Egj, is the single-entry
matrix defined in Table 1. This holds because the operator matrix Eg ;- DFT applies the k-th

which is guaranteed to be a poly-

row of the DFT matrix to f_; thereby evaluating f at w®. Thus we can write the operator for
f(X)—fgcw’“) ag?:
X—w '

CDivj, = (M — w*I)™1(I = Eg s, - DFT)

A straightforward representation of bivariate polynomial % is well-known in terms of

a Toeplitz matrix obtained from coefficients of f (see e.g. [Con, Theorem 3.7] or [FK23]).
Thus, CDivy, - f is this polynomial with ¥ = w*. We discuss more details in Appendix C.

2 Assume degree of f is at most n — 1.

However, this does not give us a sparse matrix operator representation. Surprisingly, its
conjugate operator has a sparse representation. The conjugate of this matrix is the corre-
sponding operator in the evaluation space:

EDivy, = CDivj, = (M — w*1)"}(I — DFT - Eg 1)

To derive this expression, we use the fact that the conjugation operation distributes over
additions, multiplications, and inversions of matrices.

We show that the matrix EDivy is a sparse matrix with a special structure which is
intimately related to the conjugate of the derivative D operator. The structure enables O(n)
computation of % in the evaluation space. This novel result enables fast computation
of openings of KZG vector commitments as we will see in a later section. Moreover, we show
how to “stack” all the sparse EDivy matrices to result in matrices whose conjugates have a

sparse structure, thus enabling the computation of all openings in O(nlogn) time.

3.2 Useful Matrices and Transforms

We list below some special matrices in Table 1 and a correspondence between several polyno-
mial operations in the coefficient space and evaluation space in Table 2.

Matrix Explicit Form of Entry (i,) Example with n =4 and
w = (4 a primitive 4-th root of unity.
0 0 0 O
L, 365) = (k1) 00 0 0
Ex. . Ea3 =
’ 0 ,otherwise ’ 0 0 0 1
0 0 0 O
1 1 1 1
- 1 1 -
DFT w DFT = C‘* 44
1 -1 1 —1
1 =G -1 G
0 0 0 O
M 1 ,i=3j +.1 M — 1 0 0 O
0 ,otherwise 0 1 0 O
0 0 1 0
3 =G 1 G4
o Lo i#j ~ -1 3 1
_ wl i#E Ca (@
M=DFT-M.DFT-! | ¢ n 077 M=g| o, OO
W st =] 1 Ca 3 Ca
-1 -G 1 —3Ca
0o 1 0 O
D J)= -‘r.l D— 0 0 2 0
0 ,otherwise 0 0 0 3
0o 0 0 O
, 6 264 — 2 2 920, — 2
J— . .
6: DFTDDFT71 w“;—uj 17/7£J 6: 1 2(4_2 _644 2C4+2 244
nly=t i=j 4 2 204 + 2 -6 —204 +2
72(4 -2 72{4 72(4 + 2 6(4
6 2Ca +2 2 —2¢4 + 2
| o i Jo1| -2 60 —2a+2 -2
"T_lw’l , otherwise 4 -2 204 — 2 —6 —2(4 — 2
2Cq — 2 2(a 2C4 + 2 6Ca
0O 0 0 O
5 — DET. J. DET-! n—i ,j:zf.landze[l,nfl} J_ 3 0 0 0O
0 ,otherwise 0 2 0 O
0O 0 1 0

Table 1: Matrix Notations

Polynomial Operation Coefficient Basis Evaluation Basis
f(z) = pow(z)T f = péw(z) DFT 17 f 7
f(wh) Eo.r - DFTS DFT - Eg @
f@)+a F+ aéo T+al
af(x) af av
of(z), deg(f) <n—2 M/ Mo
p(x)f(x), deg(p) +deg(f) <n—1 p(M)J’ p(M)¥
4 f(x) Df_ D7
f(@)—f(w®) CDivy f = EDiv, v =
o—wh (M — wk)=1(1 — Eg), - DFT)f | (M —w*1)~1(I — DFT - Eg ;)7

Table 2: Representations of Polynomial Operations.

Some observations useful for the derivations are detailed in the following theorem.

Theorem 1. In any field ' which contains a primitive n-th root of unity w, we have:
(i) Let D be the derivative operator from Table 1. The derivative conjugate matrix D has
the following explicit structure:

N W for i # j
(D) = { =

50 s for 1 =]

(#i) The matrix EDivy is defined as EDivy = (l\7| — Wk =Yl — DFT - Eg). The k-th row of
EDiv;, is same as k-th row of D. That is, (EDivg)« = ([A))k* Equivalently, Eq j-EDivy, =
Eo - D.

(#ii) EDivg is a star-shaped matrix with the following explicit form:

(A Ji=jandi#k

L i=kandj#k
(EDivi)(ijy = —oor .j=Fkandi#k

o™k i=j=k

0 ,otherwise

Proof. Theorem 1(7) is proved in Appendix B.

Observe that pc_)'w(a:)TEoykEDivk{;’ is the evaluation of % at w®, which happens
to have a 0/0 form. By I’'Hépital’s theorem, this evaluation is also equal to f/(wF) =
pow(x) " Eg xDFT - Df = pow(z) Eq DFT - D - DFT !4 = p6w(a:)TE07k517. This establishes
Theorem 1(i).

The other rows of EDiv; induce the evaluation space computation of 53:2’;, which do not

have a 0/0 form. This is represented by the rest of the structure of EDivy:

I ,i = J and 7 7é k
——1+ j=kandi#k
0 , otherwise
This establishes Theorem 1(74i). O

4 KZG Vector Commitments with Efficient Openings

Kate, Zaverucha, and Goldberg [KZG10a] proposed a constant-sized commitment scheme for
polynomials, known as KZG commitments. A KZG commitment allows one to commit to a

polynomial f(z) such that the commitment C can be opened to any value f(«a) for a given
«. Notably, if we have a vector of values ¥, we can compute a vector commitment by first
constructing a polynomial V' (z) such that V(«a;) = v; for each v; € U, and then using the KZG
polynomial commitment scheme to commit to the polynomial V' (x).

4.1 Background

To create a KZG commitment, start with a polynomial V(z) = ag+aiz+---+a,_12" . The
commitment C' is defined as [V (7)]1, where 7 is a secret, and the powers of 7 are generated

during setup as [pow(7)]1 = [[1]1 [7]1 ... [7""'}].
To open the commitment at a point « and prove that V(«) = v, the proof 7 is computed
as follows. First, compute the quotient polynomial Q(x) = Vi@;v, and then evaluate it at

7 to obtain [Q(7)];. Verification involves checking that the provided proof 7 satisfies the
equation

e(C = [vl1; [1l2) = e(m, [7]2 = [al2),

where e is a bilinear pairing. This equation holds because V(1) —v = Q(7)(7 — «).

To compute the proof of opening, 7, the prover needs to first compute the polynomial Q(x)
and then compute [Q(7)];. Naively, this approach requires first to compute the polynomial
V which takes O(n?) time by Lagrange interpolation and do the polynomial division which
takes O(n?) time. One could optimize this further by choosing the points of evaluation as the
n-th roots of unity (denoted w) and then use FFT transforms to interpolate the polynomial in
O(nlogn) time. In the following section we will present our approach to improve the efficiency
of computing the proofs of openings and also updating commitments and updating the proofs
of openings.

4.2 Owur Approach

In this section we present our approach to improve the concrete running time for computing
the proof of opening. Moreover, we show how to compute all openings in just O(nlogn) time.
The standard approach would have taken time O(n?logn).

Finally, we also present algorithms for updating the commitments and proofs of opening.
We refer the reader to Figure 1 for all complete algorithms.

e Setup: The setup algorithm first computes the powers of 7 exactly as in the original KZG
commitment scheme. Along with that the algorithm also outputs two vectors [w]; € G7
and [@]; € GY. The vector [w]; enables us to compute the commitment with just the vector
of elements ¥, without computing the polynomial that is interpolated by these elements.
The [w]; is computed as

[W]; = DFT! . pow(r)

We also compute another vector [#]; which will be used to support fast update of openings,
as we will see later. Let J be the matrix obtained by stacking all the k-th columns of EDivy

across all k:
S {wile i#

n—1, —i 4
Tw =17

It turns out that the conjugate matrix Jisa sparse matrix:

j_{n—i,jzi—lm@iemn—u

0 , otherwise

Setup(7):

e Let (n = 2%) powers of 7 : [pow(7)]1 = ([1]1, [7]1, [7H1,- .-, [T" 1) € G"

e Let [w]; = DFT* - [pow(7)]y R

e Let [@]; = DFT~1.J. [pow(7)]1, where J is the sparse matrix defined as in Table 1.
e Output pp = ([7]a, [w]1, [i1).

Commit (pp,¥) : Output Comy = (¥, [@]1)

Open at index i (pp,¥,i): Output m = [W]]EDivi@ = 3. = [(@);] +
{(6)(i7*)17 [(1%):]1, where D is defined as in Table 1.

Open all indices (pp, ¥) : Output 7, = [w]; o D7 + (ColEDiv - [i];) o ¥ + DiaEDiv -
([W]1 o ¥). This algorithm is explained in Section 4.3.

Verify opening (pp, Comy,v;, m;): Output e(Comy — [v;]1, [1]2) = e(m;, [T]2 — [w']2)
Update commitment (pp, Comy, i, v}, v;): Output Com}, = Comy + (v — v;)[(0);]1.

Update opening (pp, 7, J, %, v}, v;) :

o If j # i, output 7 = m; + (v; — ;) (o [(@))1 + r“jz__zﬂ[(w)]]l)
o If j =1, output 7 = m; + (v — v;)[(@)i]1.

Figure 1: KZG commitments with efficient openings

Now we compute [@]; in O(nlogn) time as:
[@, =J-[@]; = DFT1.J.DFT-DFT . [pdw(r))x
=DFT 7 [pow(r)],

Commit: As mentioned above, we do not need to interpolate the vector ¥, since we compute
the vector [w]; in the setup. Thus the commitment Com can be computed as

Com = 7' [,

Open at index i: To open at index i, the original KZG algorithm required to compute

the polynomial Q;(x) = % and then compute [Q;(7)]1. To compute @; we would first

need to interpolate V using ¥. We observe that we don’t actually need to calculate these

polynomials. Recall that the proof of opening is [Q;(7)];. This can be evaluated by using
(n — 1) points w’ as

, v — v

() = 2 ?

Qi) = wl — w?

and one more point at w’. But note that the point at w’ which is % is in the 8

form. We therefore need to use I'Hopital’s rule, and just need to compute V;(w?). Then
the polynomial [Q;(7)]1 can be computed as:

As we have discussed before, we can compute V’(w’) directly in the evaluation space,
without interpolating the polynomial and then computing the derivative. Given the explicit

10

form of the derivative conjugate matrix D = DFT-D- DFT~!, we can compute the evaluations
of the polynomial V' by simply computing D#. Since (D); ; has the form:

Wit

e n—1 ...
P 1fz;é]and27wi, ifi=jy (1)
we can compute

. w! ™ n—1
Vi) = Sy i+ U
J#i

Overall, this is just explicitly computing the action of the operator EDivg, by noting that
[Q,(T)]l = [pGW(T)H—EDinZ_f.
Verify opening proofs: The verification algorithm is exactly as in the original KZG
construction with a single bilinear pairing check. This ensures full compatibility between
the original scheme and our optimized version.

e(Comy — [vil1, [1]2) = e(mi, [7]2 — [w']2)
Update commitment: When the value at index i, i.e. v; is updated to v}, then the naive
approach to compute the updated commitment would be to simply recompute (v/, [@]),

where v’ is the same as ¥ except at position i. We observe that using [@]; we can update
the commitment simply as:

Comy, = Comy + (v} — v;) [Wil1

Update proof of opening: Consider the case above where the value at index ¢ has been
updated from v; to v,. The proof of opening is now not valid anymore. To this end, one
could recompute the proof of opening at index ¢ as in the opening algorithm, and this would
cost O(nlogn). We show a more efficient O(1) algorithm to update the proof of opening.
Let us first consider the case when index 7 does not correspond to the index j at which the
proof of opening is to be updated, then the new opening 71';» can be computed. Recall that
the proof of opening is computed as

Substituting v} instead of v; in the first half we get,

Vp — Vi . (Vi — ;).
2 B+ G [
k#j

Substituting v, instead of v; in the derivative polynomial V'

. J—i -1
V/(OJZ)/:ZU]"L—F’U{'(H)

w? — wJ ! 200t
JFi

(n—1)
2wt

= V() + (o) = vi) -

Combining these two equations we get:

=y (0=) (e [+ (@))

wt — wi wl — wt

Now let us consider the case when index i is the index at which the proof must be updated.
This is represented by the action of the i-th column of EDiv;, which we already incorporated
as the i-th element of the setup vector [i];. In this case, the proof can be updated using
the vector [u]; as follows:

T = m; + (v — i) [(@)]s

11

4.3 Computing all KZG Openings in O(nlogn) time

Recall, we intend to compute [w]{ - (EDivk>Z;é - 9. Also, recall the structure of EDivy from

Theorem 1 (7i4):
(L Ji=jandi#k

wz—_Lik

iy i=kandj#£k
(EDivi)(ijy = 4~ .j=kandi#k

plyk i=j=k

0 ,otherwise

We now decompose and stack all the EDivy matrices as follows, leveraging their star structure:
1. The stacking of all the k-th rows of EDivy is just the derivative conjugate matrix D (by
Theorem 1 (77)).
2. Define ColEDiv as the stacking of all the k-th columns of EDivy, with the diagonal entries
set to 0, over all k:
_% . .
ColEDiv = { ~@w 17
0 ,1=7
3. Define DiaEDiv as the stacking of all the diagonals of EDivg converted to rows, with the
diagonal entries set to 0:

1 . .

DiaEDiv = {w?’—w" AET

0 =17
In fact, it turns out that DiaEDiv = —ColEDiv.
The vector of all openings is a careful sum over the three operators defined above:

1. The stacking of the rows operates on the evaluation vector. The resulting vector from
this operation multiplies entry-wise to the powers—oAf—tau vector, that is, as a Hadamard
product. More precisely, we compute []] -diagonal(D#%). which is conveniently represented
(as a columns vector) by []; o D7.

2. The stacking of the columns operates on the powers-of-tau vector. The resulting vector
from this operation multiplies entry-wise to the evaluation vector as a Hadamard product.
This contribution is represented as (ColEDiv - [&];) o ©.

3. The stacking of the diagonals as rows operates on the Hadamard product of the evaluation
vector with the powers-of-tau vector. This contribution is represented as DiaEDiv- ([w]; o?).

Given the above observations the vector of all KZG openings is:

[@]; o D + (ColEDiv - [if];) o & + DiaEDiv - ([&]; o ¥) (2)

The DFT conjugates of f), ColEDiv, DiaEDiv are all sparse matrices. A bit of algebra shows
that:

—(CO/”ﬁV)iJ = (D@V)@j =

ot ,(6,9) = (0,n = 1) (3)
i—2H j=i—Tlandie€[l,n—1]
0 , otherwise

So the vector of all openings can be computed in O(nlogn) time.

This summarizes our approach to achieve concrete efficiency in computing openings and
updates. We remark that in our construction the proof of opening can be computed with
just multi-scalar multiplication operations and can be parallelized. In the next section we will
compare our approach with two other approaches that also extend the KZG construction to
achieve faster proofs of openings.

12

4.4 Other Approaches

Feist and Khovratovich [FK23| present a construction to compute n KZG proofs in
O(nlogn) time. They observe that the coefficients of the polynomial) can be computed
with just n scalar multiplications in the following way:

n—1

Qu(z) = ZQiXi7 Gn-1=Vn, ¢ =Vjr1+v g1
=0

Note that their approach requires a sequential computation of the coefficients ¢;, whereas
our approach is highly parallelizable using multi-scalar multiplications directly in the evalua-
tion space.

They also present a formula for computing n KZG proofs in O(nlogn) time. While we
achieve the same asymptotic computation time, our approach is more elegant, and simple.

Their technique leverages FFTs to handle polynomial evaluations efficiently. The key
innovation lies in constructing a polynomial h(X) whose evaluations at specific points yield
the required KZG proofs. This method ensures that for n evaluation points, the proofs can
be computed in O((n + d)log(n + d)) group operations if the points are roots of unity, or
O(nlog®n + dlogd) otherwise.

The coefficients of the polynomial h(X) are computed using a Toeplitz matrix formed
from the coefficients of the original polynomial V(X) and the evaluation points. Multiplying
a vector by a Toeplitz matrix can be efficiently performed in O(nlogn) time [FK23], reducing
the complexity of the operations involved. Specifically, the technique involves computing the
Discrete Fourier Transform (DFT) of the vector of polynomial coefficients and the vector of
powers of the evaluation points, followed by element-wise multiplication and an inverse DFT
to compute all the KZG proofs of openings.

Tomescu et al. [TAB'20] present a construction for an aggregatable sub-vector commit-
ment (aSVC) scheme. An aSVC scheme is a vector commitment that allows aggregation of
multiple subvector proofs into a single small subvector proof. Specifically, they extend KZG
commitments to allow for proving multiple proofs of opening. Their setup algorithm is similar

to ours in that they generate ¢ = [gﬁﬂ]ie[n}, which is the same as our [@]; (here £; is the
Li(r)—1
Lagrange basis polynomial) and also @ = [g 7=« | which is the same as our @. They require
A(r)
another group element a = ¢g(”) and another vector of group elements @ = g7« . Thus their
setup is larger than ours.

Computing the KZG commitment is done similar to our approach, by making use of the
vector . They present a construction to compute the opening for a single point using n
exponentiations and n scalar multiplications by making use of the public parameters 4 and a.

V(r)-V(w')

The main idea here is that the quotient polynomial Q(7) = ——Z— — can be rewritten as:

zn: Lj(r)vj —vi _ Zn: Li(m)v; Li(r)vi —vi _ Zn: v L) o Li(r) — 1
‘ T—Ww' = T =W T—w' | ,jT—wl YWl
J=0 J=0,j#1 J=0,57#1
Note that the right hand side of the expression can be computed iI}: t(h)e exponent by using .
Furthermore using a; and a; from @, they show how to compute gTJ—wi .

Our approach is simpler and faster due to the avoidance of computing Lagrange basis
polynomials at setup, commit, opening, as well as updates. Moreover, due to the nature of
explicit sparse matrices, the operations are highly parallelizable. We highlight that [TAB™20]
needs an extra vector of group elements (denoted @) to compute their openings and updates
to the openings. Our construction does not need this, since we use a different approach of

13

using n points (including the point at index i) to compute an opening for i. Moreover, our
characterization in Theorem 1 shows a more elegant and parallelizable technique to compute
all openings in O(nlogn) time. We provide a summary of comparisons in Table 3.

Cost to open Cost to open | Cost to up- | Cost to up- | Setup
all indices date (j # i) | date (j =1) | size
[FK23] seq O(n) mult | O(nlogn) - - n|G|
[TAB*20] O() exp + | O(nlogn) o(1) O(1) 4n|G|
O(n) mult
Our approach | O(n) mult O(nlogn) o(1) O(1) 2n* |G|

Table 3: Comparing different approaches to computing KZG commitments. If we precompute
ColEDiv - [&]; in the setup, our setup size is 3n|G|.

4.5 Applications of efficient computation of all openings

Data Availability Sampling: In blockchain networks, participants can join as full nodes
or light clients. Full nodes store and verify all block data and headers, while light clients only
store block headers and rely on full nodes for data verification through fraud proofs. However,
fraud proofs only help detect invalid data, not unavailable data. Data Availability Sampling
(DAS) schemes, formalized by Hall-Anderson et. al. [HASW23], allow a block proposer to
encode block content into a commitment and codeword. The light clients can then verify
data availability by sampling parts of the codeword, ensuring the entire data is available if
a sufficient number of light clients successfully probe it. The encoding of this data entails
computing all openings of the commitment scheme. Ethereum has proposed to use the KZG
commitment scheme for their DAS construction [Res]. Using our scheme in conjunction with
their DAS scheme will improve the efficiency of the encoding function.

A related application is that of proof-serving nodes (PSNs), as described in [SCP*22]. These
nodes assist light clients by maintaining proofs of openings for a commitment, which represents
the state of a cryptocurrency. Any update to the state reflects a change in the commitment,
necessitating the update of the proof of opening for all users. This process can impose a
computational overhead on light clients, as they need to update their openings with every
change to the commitment. PSNs alleviate this burden by updating each proof with every
state change. This incurs a computational cost of O(n) for each state change. Using our
scheme, however, PSNs can delay updating proofs until after a set of changes, and then
update all proofs in O(nlogn) time, which may be more efficient depending on the frequency
of required proof updates.

A recent work by Ateniese et al [ABC'23] aim to improve the scalability of decentralized
storage by presenting efficient proof-of-replication protocols. In their construction the prover
is required to prove openings of vector commitment during the auditing phase. Using our
scheme the prover can precompute all proofs, and provide the corresponding proof accordingly.

Improving run time of Lookup arguments for SNARKSs: Lookup arguments such as
Caulk [ZBK™22] present a scheme to prove membership of a subset within a public set in zero-
knowledge. The main idea here is to represent the set as KZG commitment, and then to prove
knowledge of openings efficiently. To prove a subset (that is multiple openings), the prover
can precompute all openings and thereafter batch the openings to compute a a constant sized
proof for the entire subset. Using our algorithm, we can improve the efficiency of this pre-
computation of all proofs. Similar techniques are also used in Baloo [ZGK™22] and c¢q [EFG22].

14

The precomputation also finds applications in Protostar [BC23], SubPlonk [CGG™124], im-
proved lookup arguments [CFF124, DGP*24], cqlin [EG23], zero-knowledge location pri-
vacy [EZC'24], batching-efficient RAM [DGP124] etc.

Laconic OT: In laconic oblivious transfer, the receiver holds a database D € 0, 1" of n choice
bits and publishes a digest digest < H (D), whose size is independent of the size of D. The
sender can then repeatedly choose a message pair (mg,m1), an index i € [n], and use the
digest to compute a short message for the receiver, which allows them to obtain mpp;. The
construction of Fleischhacker et al [FHAS24| uses the KZG commitment scheme to compute
the digest. More specifically, receiver computes the digest (as a KZG commitment), and all
openings, and sends the digest to the sender. The sender witness encrypts the messages using
the digest, such that the receiver is able to decrypt using only the proof of opening at the
corresponding index. Since the receiver computes all openings of the KZG commitment, it
can be done efficiently using our scheme.

Non-interactive Aggregatable Lotteries: Fleischhacker et al [FHASW23] present Jack-
pot, which is a lottery scheme based on vector commitments. More specifically, they present
a construction of a verifiable random function (VRF) using the KZG vector commitment. In
their scheme, each party P; initially commits to a random vector) e [k]T to participate
in T' lotteries. In the i-th lottery round a per party challenge z; is derived from a random
seed and party P; wins iff v(j) = x;. Each party can prove that they won by revealing an
opening for position ¢ of their commitment. The authors note that the most time-critcal part
for the parties is in the computation of the proofs. But all the openings can be computed
immediately after key generation and before the lotteries. Using our scheme the efficiency of
this computation can be improved.

4.6 Implementation and Benchmarks

In this section we describe the implementation and evalutation of the different KZG commit-
ment schemes.

Hardware. All benchmarks were performed on a MacBook Pro with Apple M3 Max chip,
with 16 cores and 64 GB RAM.

Code. All code is implemented in Rust, using the Arkworks [ac22] library. The criterion-rs
crate was used for all benchmarks.

Methodology. We implemented the constructions of [FK23], [TABT20] and the original
KZG construction [KZG10a] and compare the run times of setup, committing, opening one
position, opening all positions and updating commitments as well as updating a single proof
of opening. We varied the size of the vector from 16 to 8192 and measured the time taken for
each operation.

Setup: To setup, the work of [FK23] is the only one that matches the original KZG algorithm
since they only need the powers of 7 in setup. Our Setup algorithm is faster than that of
[TABT20] by about 60% when we don’t precompute ColEDiv, and about 70% slower when do
the precomputation. This is attributed to the fact that they need to compute extra vectors
of group elements. See Figure 3.

Commit: Since the algorithm to compute commitment is the same in all the four construc-
tions, the time taken to compute a commitment is exactly the same.

Open at index i: Our algorithms currently match the run times of the original KZG and
[FK23] algorithms and are about 30x faster than that of [TAB*20] and is about 7% faster
than [FK23] and original KZG[KZG10b]. This is primarily because [TABT20] make efforts
to enable proofs of batch openings at once. Their algorithm for a single opening is therefore

15

Open_all Benchmark Results

N
°
°©

—— KZGTabDFK
—— KZGDeriv
—— KzZGOriginal

-
N
o wu

=
N
w

I
N
al

Mean Time in ms (scaled by 10°6)
° -
v o
=) =)

128 2048 4096 8192 16384
Size (n)

(a) Comparing run times to compute proofs of
openings at all positions. Here KZGDeriv repre-
sents our implementation.

Open_all Benchmark Results

—— KZGTabDFK
=—— KZGDeriv

Mean Time in Seconds
- = N N w
o a 5} a -]

o

128 2048 4096 8192 16384
Size (n)
(¢) Comparing run times to compute proofs of
openings at all positions with precomputation of
ColEDiv.

Open_all Benchmark Results

16000
—— KZGDeriv

== KZGTabDFK
14000

12000

10000

Mean Time in Milliseconds

16 512 1024 2048 4096 8192
Size (n)

(b) Comparing run times to compute proofs of
openings at all positions for smaller values n <
213,

KZG Benchmark Results

—e— KZGDeriv
—e— KZGTabDFK

3500

H
H

2500

H
8

1500

Mean Time in Seconds
5

H
8

Si:; (n) ZZH
(d) Comparing run times to compute proofs of
openings at all positions for larger sizes of n €
[215 220}'

Figure 2: Comparison of run times for computing proofs of openings at all positions.

slower since it requires n field operations and n exponentiations.

Open all indices: The naive way of opening all indices would be to compute the opening
proof for each index. This will take O(n?) time. As mentioned earlier through FFT transforms
both [FK23] and [TAB*20] show how to compute all proofs in O(nlogn) time. For n = 24,
their algorithms are 60x faster than the naive algorithm. Asymptotically our constructions
also achieve O(nlogn) computation time, but since we are able to compute the openings by
multiplying sparse matrices we are able to achieve better concrete numbers. See Figure 2a
for a comparison with the naive opening strategy. Our algorithms are about 2.13x faster
for n = 2' and about 2.22x faster for n = 220 than that of the approaches by [FK23]
and [TAB'20] (See Figures 2d and 2). We estimate that as n grows larger and larger our
algorithm will perform better than that of [FK23].

Updating commitments and proofs: Since updating a commitment is the same operation
across all algorithms there is no difference in running times. When considering updates to a
proof of opening in the case i = j, (i.e. to update a proof 7; when v; has been updated), the
algorithms of [TAB*20] and ours are exactly the same, but on the other hand, we present a
faster update to our proof of opening. Our algorithm is twice as fast as that of [TABT20].
See Figure 4b

16

New k Results New Benchmark Results

== KZGOriginal ———— KZGTabDFK
—— KZGDeriv 14| —— KZGDeriv
= KZGTabDFK == KZGOriginal
20001 . \zGFK
12
8 <
2 c
§ 1500 3 1o
2 (7]
H n
g £ 8
£ [
E 1000 E 6
F c
500
2
° 1]
16 512 1024 2048 4096 8192 128 2048 4096 8192 16384
size (n) Size (n)
(a) With no optimizations for open-all (b) Optimized version: ColEDiv is pre-computed

Figure 3: Comparing run times to do setup of public parameters. Note that since we precom-
pute ColEDiv in the setup, it is slower than previous work.

Open Benchmark Results Update_open_j k Results

e KZGOriginal O~
1750 | —— KZGTabDFK 0.00022-
— KZGFK
== KZGDeriv
1500 » 0.00020
) 3
£ <
2 1250 8
H @ 0.00018-
2 w
S 1000 £ —e— KZGDeriv
£ g 0.00016 1 == KZGTabDFK
E 750 '=
< $ 0.00014
§
£ s00 g
0.00012-
250
o 0.00010 ¢
o 52 10m 2088 2006 1o 128 2048 4096 8192 16384
Size (n) Size (n)
(a) Open at index i = j (b) Open at index i # j

Figure 4: Comparison of run times for Open

Verifying proofs of opening: Since the verification algorithm is the same pairing check
across all algorithms, the computation time is also the same.

5 Polynomial Division in Groth16

In this section we will present the necessary background on the Groth16 [Grol6b] scheme and
Quadratic Arithmetic Programs. Then we explain our approach leveraging I’Hopital rule and
provide implementation and benchmarks.

5.1 Background

Quadratic Arithmetic Programs. Gennaro et al [GGPR13, PHGR16] presented a char-
acterization of the complexity class NP called Quadratic Span Programs. They also defined
Quadratic Arithmetic Programs, a similar notion for arithmetic circuits.

A QAP Q over the field F, contains three sets of m + 1 polynomials U = {u,;(x)},V =
{vi(z)}, W = {w;(z)} for i € [0,m] and a target polynomial #(z).

This QAP defines a language of statements (ay, . ..,q;) € F! and witnesses (aj41,...,amn) €

17

Setup(QAP, pp):
1. Sample «, /87 e 57 T <]Fp

2. Compute Prover Key pk.:
(a) Compute |1, [Bl1, [Bl2, [0]1, [d]2

1,
(b) Compute {[¢;)y = [FPregrndy
(c) Compute {[0;]; = [713(7)1] ;-L__g A
([Yil1 = ;L;o Ui,j [T‘?]l}z—o

(e
(f 1
Compute Verifier Key vk,:

(a) Compute |1, [Bl2, [7]2, [d]2
(

b) Output vk, = {[xi]1 = [Bui(THm};(THwi()] i 0

Compute {[p;]2 =

)
)

d) Compute {
; j=0 Ui,j[T]] }gno

3.

Prove(pk.x, QAP, (a;);"):
1. Sample r,s <),

) = (it aiui (X)) (o5 aivi (X)) =301 o aiwi (X)

2. Compute polynomial h(X 69

3. Compute:
(a) [A]1 = a1 +7[0]1 + 37 ai[vih
(b) [Bl2 = [Bl2 + sld]z + 321, ailwi]2

(c) [Ch = slafu + rlBl1 +rslo] + 374y alGl + 5g hyloh
4. Output ™ = [A]l, [B]Q, [C]l

Verify (vk.y, (a ,,>i: ,TT)

1. Compute [V]; = Zi ailxil1
2. Parse 7 as [A], [B]e, [C]l

3. Check: [A]y - [Blz = [a]1 - [B]2 + [C]1 - [6]2 + [V]1 - [7]2

Figure 5: Overview of Grothl6

F™=l such that with ag = 1:

Z azuz(X) . Z a,;vi(X) = Z aiwi(X) + h(X)t(X),
i=0 =0 =0

for some degree n — 2 quotient polynomial h(X), where n is the degree of ¢(X), FF =T, [is
the number of field elements in the public statement, m is the number of total field elements
in the public statement, private witness and wire values together and n is the total number
of gates in the arithmetic circuit. These values constitute the public parameters pp.

Groth16 Overview. We present an overview of the Groth16 [Grol6b] protocol in Figure 5.

5.2 Owur Approach

Rank-1 Constrained System (R1CS) [BCR'19] provides an alternate way to view QAPs, by
way of three R1CS matrices U™9*"v, V"*™ and W9 where ng4 is the number of gates
and n, is the number of variables. A vector d™ satisfies the circuit iff:

UioVa=Wa,

18

where o is the Hadamard product. These matrices have entries in the field F,, where ¢ is
the order of the bilinear groups used for instantiating the the proof system. Without loss of
generality after sufficient padding, assume that n = ny is a power of 2 that divides the order
of Fy, that is, n | ¢ — 1. Let w be a primitive n-th root of unity in F,.

Let t(X) = [[14,(X —w®) = X™ — 1, where intuitively w’ is the z-coordinate assigned to
the i-th gate. We have the relations:

uj(w') = (U)y
Vi € [0,ng],j € [0,m0] 1 (W) = (V)
wj(w') = (W)i

Typically the circuit frontend, the public statement, and witnesses are processed to pro-
duce the vectors Ud,Vad, Wda. Let’s denote the interpolated polynomial of these evaluation
vectors over the points w:

u(X) = > 7% aju;(X)
v(X) =30 ajv;(X)
w(X) = Y50 ajwi(X)

The asymptotically most complex operation in the computation of a Groth16 proof is the
computation of the polynomial quotient h(X):

h(X):fZi(X) :U(X)U(X)—U)(X)’ (4)

where fz(X) = u(X) - v(X) — w(X).

Note that both t(w") and fz(w’) are 0 for all i € [0,ny]. For this reason we cannot directly
evaluate h(w®) using the quotient equation (4). However we can use I’Hopital’s Rule (Theorem
1) and get

Now, we have:
d
! _

= u(X)'(X) — v/ (X)v(X) — w'(X)

[u(X)o(X) = w(X)]

Therefore, we can write for all i € [0, ng4]:

h(w?) =

Denoting 77 € Fy?, such that (77); = h(w'), we can write:

7=UdoV'da+U'doVad— W'd, where:

u’.(wi) U'.(wi) ’w’v(wi)
Ui = oy (Vi = oy Wi = Ty

Denoting DFT! as the inverse Vandermonde matrix with powers of w, we have DFT 177 =
h, the coefficient vector of h(X). Then we could preprocess the CRS as follows. Let t € Fg?
be such that (t); = [r°t(7)/d]1, and § = (DFT~1)T£. Then we have:

AU | pre_ o1 “N\Tp_ =T
[5 1_h t=17 (DFT %) 't=17'60

This gives us a blueprint for an algorithm: We publish g in the CRS, instead of ¢ and also
publish matrices U’, V', W' in addition to the R1CS matrices U,V,W. Prover computes
i7=UdoV'd+U'doVd—W'd and then adds 7' 0 to the C' component of the Groth16 proof,

instead of computing h(X) and then computing [LL(T?(T)

However, typically U,V,W are sparse matrices due tlo the typically bounded fan-in of
practical circuit gates, whereas U’, V', W/ maybe dense matrices. So computing U'a, V'a, W'd
might end up taking quadratic time. Hence we apply our familiar transform of first going
to coeflicient space, taking derivatives, and coming back to evaluation space for point-wise
multiplications and divisions. We summarize this in Algorithm 1.

Algorithm 1 Compute n; = (h/t)(w?) for i = 0,...,n — 1 using ’'Hopital’s Rule
Let the inputs be (@, ¥, w) < (Ud, Va, Wa)
@ < DFT-D-DFT '@
¥ + DFT-D-DFT %
W «+ DFT-D-DFT 1w

invt’ (n~Lwn ! .. W inTh) >t(X) = X" —1so t'(w) = nw*
-/

7 (o +u o¥—) oinuvt

return 7.

5.3 Comparison with SnarkJS and Arkworks

Popular implementations as found in for example Arkworks and SnarkJS [SNA] avoid the 0/0
form by computing the polynomials at evaluation points shifted by a 2n-the root of unity.
This is summarized in Algorithm 2.

Algorithm 2 Compute 7; = (h/t)(w?) for i = 0,...,n — 1 using coset FFT

Let the inputs be (@, ¥, W) < (Ua, Va, Wa)

Let ¢ be a primitive 2n-th root of unity.

Let S be the n x n diagonal matrix with non-zero entries S;; = ¢t
i* < DFT-S-DFT 'u

v* «+ DFT-S-DFT %

W* + DFT-S-DFT '

invt < ((C" = 1)~ (¢3n =)7L (¢ =)7L (¢ — 1)
i+ (@* o T — @*) o invt"

return 7.

Like SnarkJS, our protocol also needs to perform 3 inverse FFTs and 3 FFTs to get
Ua,V'a,W'a, but we are avoiding computations at the 2n-th roots of unity. We just use
n-th roots of unity. This gives us a more expansive choice for group orders. That is, we can
support twice as many gates as SnarkJS, while instantiating with the same bilinear group.

5.4 Implementation and Benchmarks

The above algorithm has been implemented in a fork of the Groth16 implementation by Ark-
works and has been compared with the existing implementation which uses coset FFT’s to
compute h. Our algorithm is slightly faster, about 2-3%. This comparison was done using the
most recent release of the ark-groth16 crate (version 0.4.0) on a demo circuit with 24320 con-
straints which proves knowledge of a pre-image of a Blake2b hash. Our implementation of the

20

computation of h takes 1.06s to compute h compared to 1.09s using the baseline implemen-
tation. Since the number of FFT’s and inverse FF'T’s is the same in the two implementation,
the small difference in performance is due to the linear operations being a bit faster.

6 Other systems

In this section, we briefly describe the applicability of our techniques to two other systems:
STARK and PLONK. We defer detailed technical descriptions and benchmark evaluations to
future work, while providing a high-level blueprint here.

6.1 STARK

A STARK [BSBHR18] prover generates the execution trace of the program on a given set of
inputs and does the following®:
1. Interpolate the execution trace to obtain trace polynomials.
2. Interpolate the boundary points to obtain the boundary interpolants, and compute the
boundary zerofiers along the way.
3. Subtract the boundary interpolants from the trace polynomials, and divide out the bound-
ary zerofier, giving rise to the boundary quotients.
Commit to the boundary quotients.
Get r random coefficients from the verifier.
Compress the r transition constraints into one master constraint that is the weighted sum.
Symbolically evaluate the master constraint in the trace polynomials, thus generating the
transition polynomial.
Divide out the transition zerofier to get the transition quotient.
9. Commit to the transition zerofier.
10. Run FRI [BSBHRI18] on all the committed polynomials: the boundary quotients, the
transition quotients, and the transition zerofier.
11. Supply the Merkle leafs and authentication paths that are requested by the verifier.

We now use the observation that the transition polynomial evaluations and the zerofier
evaluations are all 0 at each row in the trace. Therefore, we can use I’Hopital’s rule again:
instead of computing m(X)/z(X), we instead compute m/(X)/z'(X). Just like as in Groth16,
we can do much of this computation in the evaluation space, and avoid division in the coeffi-
cient space altogether.

1. We additionally describe the derivative transition polynomials m/(X) in the circuit setup.
2. We can optimize the description of 2z/(X) by having the evaluation domain be a suitable
subgroup of roots of unity, with padding if necessary.
The prover evaluates the transition derivatives while generating the trace.
Compute the derivative of the trace using FFT and the D matrix, as in our Grothl6
optimization.

N oot

®©

- W

Compute point-wise division in the derivative evaluation space

Finally, we use a DF'T to migrate the division evaluations to the coefficient space.
Now we can use FRI as usual over this quotient polynomial.

Analogous optimizations can be done for the boundary quotient evaluation as well.

w0 N oo,

6.2 PLONK

PLONK [GWC19] has a general strategy similar to STARKSs, but uses a different arithmetiza-
tion. Instead of transition polynomials, PLONK uses selector polynomials to specify circuits.

*https://aszepieniec.github.io/stark-anatomy/stark

21

https://aszepieniec.github.io/stark-anatomy/stark

In addition, PLONK uses prescribed permutation checks to prove consistency of wire values
between execution rows. The rough blueprint is similar now:

1. Specify the derivative of the selector and permutation check polynomials at circuit-based
setup.

2. Precompute the derivative of the zerofier polynomial, again optimizing through careful
selection of subgroups of roots of unity.

3. Compute the trace as usual.

4. Compute the derivative of the trace using FFT and the D matrix, as in our Grothl6
optimization.

5. Compute point-wise division in the derivative evaluation space using the circuit polynomial
derivatives and trace polynomial derivative.

6. If KZG is used for polynomial commitments, then we can use our optimizations in this
paper to compute proofs and openings in the evaluation space itself.

Acknowledgment

The authors would like to thank Deepak Maram, Ben Riva, and Aayush Yadav for helpful
feedback and pointer to references.

References

[ABC*23] Giuseppe Ateniese, Foteini Baldimtsi, Matteo Campanelli, Danilo Francati, and

Ioanna Karantaidou. Advancing scalability in decentralized storage: A novel
approach to proof-of-replication via polynomial evaluation. Cryptology ePrint
Archive, 2023.

[ac22] arkworks contributors. arkworks zksnark ecosystem, 2022.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,

transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/046.

[BC23] Benedikt Biinz and Binyi Chen. Protostar: generic efficient accumulation/-

folding for special-sound protocols. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 77—110. Springer,
2023.

[BCR™19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS.
pages 103—-128, 2019.

[Ber07] Daniel J. Bernstein. The tangent FFT. Applied Algebra, Algebraic Algorithms

and Error-Correcting Codes, Lecture Notes in Computer Science 4851, page
291-300, 2007.

[BOGW19] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-

rems for non-cryptographic fault-tolerant distributed computation. In Providing
sound foundations for cryptography: on the work of Shafi Goldwasser and Silvio
Micali, pages 351-371. 2019.

22

https://eprint.iacr.org/2018/046

[BSBHR18]

[CFF+24]

[CGGT24]

[CEM*20]

[Con]

[CT65]

[DFGK14]

IDGP+24]

[EFG22]

[EG23]

[EHK*+13]

[EZC*24]

[FHAS24]

[FHASW23]

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-
solomon interactive oracle proofs of proximity. In 45th international collo-
quium on automata, languages, and programming (icalp 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

Matteo Campanelli, Antonio Faonio, Dario Fiore, Tianyu Li, and Helger Lip-
maa. Lookup arguments: improvements, extensions and applications to zero-
knowledge decision trees. In IACR International Conference on Public-Key
Cryptography, pages 337-369. Springer, 2024.

Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha.
Sublonk: Sublinear prover plonk. Proceedings on Privacy Enhancing Technolo-
gies, 2024.

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zkSNARKSs with universal and
updatable SRS. pages 738-768, 2020.

Keith Conrad. The different ideal. Expository papers/Lecture notes. Available
at: https://kconrad.math.uconn.edu/blurbs/gradnumthy/different.pdf,
year=2009, publisher=Citeseer.

James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of computation, 19(90):297-301, 1965.

George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square
span programs with applications to succinct NIZK arguments. pages 532-550,
2014.

Moumita Dutta, Chaya Ganesh, Sikhar Patranabis, Shubh Prakash, and Nitin
Singh. Batching-efficient ram using updatable lookup arguments. Cryptology
ePrint Archive, 2024.

Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for fast
lookups. Cryptology ePrint Archive, 2022.

Liam Eagen and Ariel Gabizon. cqlin: Efficient linear operations on kzg com-
mitments with cached quotients. Cryptology ePrint Archive, 2023.

Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. pages 129-147, 2013.

Jens Ernstberger, Chengru Zhang, Luca Ciprian, Philipp Jovanovic, and Se-
bastian Steinhorst. Zero-knowledge location privacy via accurate floating point
snarks. arXiv preprint arXiv:2404.14983, 2024.

Nils Fleischhacker, Mathias Hall-Andersen, and Mark Simkin. Extractable wit-
ness encryption for kzg commitments and efficient laconic ot. Cryptology ePrint
Archive, 2024.

Nils Fleischhacker, Mathias Hall-Andersen, Mark Simkin, and Benedikt Wag-
ner. Jackpot: Non-interactive aggregatable lotteries. Cryptology ePrint Archive,
2023.

23

https://kconrad.math.uconn.edu/blurbs/gradnumthy/different.pdf

[FK23]

[For65]

[GGPR13]

[GMNO18]

[Grol6al

[Grol6b]

[GWC19]

[HASW23]

[Jou00]

[KZG10a)

[KZG10b)

[Lip13]

IMGWS7]

IMVO91]

[PHGRI16]

[Res]

Dankrad Feist and Dmitry Khovratovich. Fast amortized kzg proofs. Cryptology
ePrint Archive, 2023.

G. D. Jr. Forney. On Decoding BCH Codes. IEEE Trans. Inf. Theor., IT-
11:549-557, 1965.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. pages 626-645, 2013.

Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orru. Lattice-
based zk-SNARKSs from square span programs. pages 556-573, 2018.

Jens Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology—-EUROCRYPT 2016: 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II 35, pages 305-326. Springer, 2016.

Jens Groth. On the size of pairing-based non-interactive arguments. pages 305—
326, 2016.

Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments of knowl-
edge. Cryptology ePrint Archive, 2019.

Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner. Foundations of
data availability sampling. Cryptology ePrint Archive, 2023.

Antoine Joux. A one round protocol for tripartite diffie-hellman. In International
algorithmic number theory symposium, pages 385-393. Springer, 2000.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commit-
ments to polynomials and their applications. pages 177-194, 2010.

Aniket Kate, Gregory M Zaverucha, and lan Goldberg. Constant-size com-
mitments to polynomials and their applications. In Advances in Cryptology-
ASIACRYPT 2010: 16th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Singapore, December 5-9, 2010.
Proceedings 16, pages 177-194. Springer, 2010.

Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. pages 41-60, 2013.

Silvio Micali, Oded Goldreich, and Avi Wigderson. How to play any mental
game. In Proceedings of the Nineteenth ACM Symp. on Theory of Computing,
STOC, pages 218-229. ACM New York, 1987.

Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. Reducing elliptic curve
logarithms to logarithms in a finite field. In Proceedings of the twenty-third
annual ACM symposium on Theory of computing, pages 80—89, 1991.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. Communications of the ACM,
59(2):103-112, 2016.

Ethereum Research. Data availability sampling. https://notes.ethereum.
org/ReasmW86SuKqC2FaX83T1g. Accessed: 2024-08-05.

24

https://notes.ethereum.org/ReasmW86SuKqC2FaX83T1g
https://notes.ethereum.org/ReasmW86SuKqC2FaX83T1g

[SCP*22] Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin
Tomescu, and Yupeng Zhang. Hyperproofs: Aggregating and maintaining proofs
in vector commitments. In 81st USENIX Security Symposium (USENIX Security
22), pages 3001-3018, 2022.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without
trusted setup. pages 704-737, 2020.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612—
613, 1979.

[SNA] SNARKIJS. https://geometry.xyz/notebook/

the-hidden-1little-secret-in-snarkjs.

[TAB*20] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist,
and Dmitry Khovratovich. Aggregatable subvector commitments for stateless
cryptocurrencies. In International Conference on Security and Cryptography for
Networks, pages 45—64. Springer, 2020.

[WB] Lloyd R Welch and Elwyn R Berlekamp. FError correction for algebraic block
codes, 1983. US patent, (4,633,470).

[ZBK"22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Ni-
tulescu, and Mark Simkin. Caulk: Lookup arguments in sublinear time. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 3121-3134, 2022.

[ZGK'22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla
Rafols. Baloo: nearly optimal lookup arguments. Cryptology ePrint Archive,
2022.

A TI’Hopital’s Rule for polynomials over arbitrary fields

Recall that I’'Hopital’s Rule, named after the French mathematician Guillaume de I’Hopital
(1661-1704), states that given ¢ € R and functions f, g : R — R which are differentiable on a
open interval around ¢ but not necessarily in ¢, we have

o f@) @)

z—c g(x) = ¢'(x)

if limy . f(z) = limg,,.g(z) = 0. As stated here, this is only valid for real functions, but
it is also true over arbitrary fields if we restrict f and g to be polynomials. Throughout the
paper, we let F denote an arbitrary field and let F[x] denote the polynomial ring over F. We
define the formal derivative as follows.

Definition 1. Let f € Flz]. If we write f(z) = Y1 a2’ for ag,...,a, € F, we define the

derivative of f as
n—1

fi(@) = ZaiJrl(i + 1)z’ € Flz].

i=0
Now, I’Hopital’s Rule for polynomials over arbitrary fields can be stated as follows:

Theorem 1. Let f,g,h € Flx] such that f(z) = g(x)h(z). Let a € F and assume that
f(a) = g(a) =0. Then

https://geometry.xyz/notebook/the-hidden-little-secret-in-snarkjs
https://geometry.xyz/notebook/the-hidden-little-secret-in-snarkjs

To prove this, we will first need a few basic results.

Lemma 1. Let f € Flz] and assume f(a) = 0 for some o € F. Then there is a unique
polynomial fo € Flz] such that f(z) = fo(x)(z — a) for all x € F.

Proof. Since F is a field, F[z] is a Euclidean domain, so there are ¢,r € F[z] with deg(r) <
deg(x — a) = 1 such that

f(z) = q(x)(z — @) +r(z). (5)
Now, deg(r) = 0 so it is constant, and setting x = « in (5) implies that r(z) = 0. Letting
fa = q concludes the proof. O

Lemma 2. Let f € F[z] and assume that f(0) = 0. Then f'(0) = fo(0).

Proof. If f is constant, the statement is true, so we may assume that f has positive degree.
Since f(0) = 0, the constant term of f is zero, so

flz)=a1z+ -+ apz™

for some coefficients aq, ..., a, € F. Using the definition of the derivative we get that f/(0) =
ap. On the other hand, we see that fy(x) as defined in Lemma 1 is

fO(I) — al _|_ - _|_ anxn717

so fo(0) = a1 = f'(0) as desired. O
Corollary 1. Let f € Flz] and let o € F be given such that f(a) = 0. Then f'(a) = fo(a).

Proof. Define g(x) = f(z + «). Now, ¢g(0) = f(a) = 0 and from Lemma 2 we get that
g'(0) = go(0). However, fo(a) = go(0) and f'(a) = ¢’(0) by the definition of g, so we get

fala) = go(0) = ¢'(0) = f'(a)
which finishes the proof. O
We are now ready prove the main theorem.

Proof of Theorem 1. Let f,g and h be given as in the theorem. Since « is a root for both f
and g we get from Lemma 1 that

fa(2)(z = @) = ga(z)(x — @) h(z)
for all z € F[z]. Since F[z] is an integral domain, this implies that
fa(2) = ga(x)h(z),

and applying Corollary 1 with both f and g we that

as desired. O

26

B Proofs of Equations

Theorem 1(i). (Restated) Let field I contain a primitive n-th root of unity w, Let D be
the derivative operator from Table 1. The derivative conjugate matrix D has the following

explicit structure:
~ W o %3
(D) = { =

5 s for i =]

Proof. Recall D=DFT-D- DFT!, where D is the off-diagonal derivative matrix (D);;—1 =1
and DFT;; = w¥. Now we have,
1. (D)ii+1 =i+ 1 and O elsewhere.
2. DFTZ] = wij.
3. DFT,! = fw™4.
To start with, let’s compute

n—1
E'=DFT-D, Ey=3 DFTy-Dy=DFT; D1, = w'U ()
k=0

Since, D = E’ - DFT~L, we have:

n—1 n—1 n—1
~) 1 1. o
Dij = Y EuDFT 1y => o (k). ﬁw_kj = Ew_’E (k) - wk(=9)
k=0 k=0 k=0

Let w7 = a, then using geometric series and its derivative, for a # 1, i.e. i # j, we have

~ 1 ,(n—"1a""! —na"+a
Dij = —Ww — D)
n (a—1)

Since a™ = w9 = 1, the above is same as:

1 - (n—1a'—n+a _ 1 (na—n) _ i
n (a—1)2 n (a—1)2

Substituting a = w’~7, the above becomes:

Wit
wt — wl
In the case that ¢ = j, we have:
D.. — 1 = k(i—i) _ 1 ~nn—=1) (n— Dw™
i =y (k) WM = TS = ;

k=0
Thus,

J—1 . .
N 7 fori # j
(D)ij = {)

27

Remark. Let

J—t.yd . .
i {
(D/)U — { ((;;LZ__fSJJ) OI:] 7éj
5, for i =

and let D” be the diagonal matrix with entries w7, so that D = D’ - D”. It is not difficult to
see that D’ is a multiplication matrix of the polynomial d(X) = (n —1)/2+ Y7~} —— (set
§ = 0 in the above definition of D). Hence, by Lemma 1, DFT-D’-DFT ! is a diagonal matrix.
However, the current lemma shows that DFT~!. D’ . D” . DFT is a shifted-diagonal non-full
ranked matrix?, which is a surprising result (note, the similarity transform is with DFT !
instead of DFT). While relationships between differential operators and Fourier transforms
are well known for functions over complete fields (such as complex numbers), to the best of

our knowledge the above characterization is new for finite extensions of) and finite fields.

Lemma 1. For any F(X), and its corresponding vandermonde matriz over Z,, for any
f(X) € Ry = Z[X]/(F(X)), VMyV~! = diag;, where diag; is the diagonal matriz with
entries f(w;) (i € [0.n —1]).

Theorem 2. Given the the following matrix J:

J= wiiwj >i 7&]
) n=1, —i

fw =17

we have that the conjugate matrix Jisa sparse matrix of the following explicit form:

j_{n—i j=i—1landie€[l,n—1]

0 , otherwise
Proof. Recall that J = DFT - J- DFT-!. Alternatively,

J=DFT~!.J.DFT
Let’s start with

n—1
—~ ~ ~ 1 ..
E'=DFT'.J, Ej=) DFT Yy Jij =DFT Yoy Jgsnyy = —w 0 (n—j—1)
k=0

Since J = E’ - DFT, we have:

n—1 n—ln_k_ 1 ' ' n—1 'n—l o w‘i n—1 o
Jij = Z Ei, - DFTy; = Tu)_l(kﬂ) W = - w™ Zw(]_’)k - Z ke U=0k
k=0 k=0 k=0 k=0

Note that >-7—g wl=9* = 0, thus we have

_;n—1
Jz] - _wn ka(]—z)k
k=0

oS et
n & n (a—1)2

4Since D is singular, it must be the case that D’ is singular; indeed it can be checked that the polynomial
d(X) has X =1 as a root, which is also a root of X™ — 1.

28

Since a" = wU=9" = 1, the above is same as:

_lw_i(n—l)al—n—i-a__lw_i(na—n) _ i]
n (a—1)2 on (a—1)2 (a—1)

Substituting a = w’~¢, the above becomes:

1 1
Jij =~ I A A
W w w W

Moreover, when ¢ = j, we have

n—1

1 . . —inzl o , n—1 n—1
Jij _ n - Wl Zw(z—z)k o % Z kw(z—z)k _ w—’L(n o 1) . w_zn _ w_zn
k=0 k=0

Bl s
O
C Toeplitz Matrices
Let M be the following n-by-n Toeplitz matrix:
fi fo o fu
M= |2 IO
Y P
fn 0 - 0
i.e. where M; ; = fiyjy1 if ¢ +j <n and M, ; = 0 otherwise.
It is well known that [Con, Theorem 3.7], [FK23]:
X)—-fy
pow(X) " - M - pow(Y) = JE) = J¥))3_ {/()
Using this, and for X using 7 and for Y using powers of w, we get
; n—1
- f w') — f T . n—
poi(r) DT = (T =) yconni () (©
i=0
= pow(r) " - (CDivy)ig - f (7

= pow(r)" - DFT™1. (EDiv,,:)"- - DFT - f (

(0¢)

Further, recall from (2) that the above in column form is same as (recalling DFT - f = 7,
n

v,
(W], = DFT~' - [p6w(7)]1, and DFTT = DFT, being vandermonde matrix of roots of X" — 1)
[@]; o D + (ColEDiv - [f];) o & + DiaEDiv - ([u]; o ¥) (9

The above also shows that [@]; does not have to by DFT-inverse of powers of a T, but can
be an arbitrary vector of groups elements. As remarked earlier the conjugates of D, ColEDiv
and DiaEDiv are all sparse, and in fact, if (ColEDiv - [17];) is given pre-computed as a vector of
group elements, then the above can be computed with just 3n+2n log n scalar-multiplications®
(the 2n log n scalar-multiplications coming from computing the last term, since DiaEDiv is not
sparse, but only its conjugate is sparse).

Salso referred as group exponentiations in mutiplicative group notation.

29

	Introduction
	Our Contributions
	Comparison with Previous Work
	Paper Organization

	Preliminaries
	Linear Operators

	Technical Overview
	Division in the Evaluation Space
	Useful Matrices and Transforms

	KZG Vector Commitments with Efficient Openings
	Background
	Our Approach
	Computing all KZG Openings in O(n n) time
	Other Approaches
	Applications of efficient computation of all openings
	Implementation and Benchmarks

	Polynomial Division in Groth16
	Background
	Our Approach
	Comparison with SnarkJS and Arkworks
	Implementation and Benchmarks

	Other systems
	STARK
	PLONK

	l'Hôpital's Rule for polynomials over arbitrary fields
	Proofs of Equations
	Toeplitz Matrices

