Paper 2022/158

Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs

Olivier Bronchain
Gaëtan Cassiers
Abstract

The performance of higher-order masked implementations of lattice-based based key encapsulation mechanisms (KEM) is currently limited by the costly conversions between arithmetic and boolean masking. While bitslicing has been shown to strongly speed up masked implementations of symmetric primitives, its use in arithmetic-to-Boolean and Boolean-to-arithmetic masking conversion gadgets has never been thoroughly investigated. In this paper, we first show that bitslicing can indeed accelerate existing conversion gadgets. We then optimize these gadgets, exploiting the degrees of freedom offered by bitsliced implementations. As a result, we introduce new arbitrary-order boolean masked addition, arithmetic-to-boolean and boolean-to-arithmetic masking conversion gadgets, each in two variants: modulo $2^k$ and modulo $p$ (for any integers $k$ and $p$). Practically, our new gadgets achieve a speedup of up to 25x over the state of the art. Turning to the KEM application, we develop the first open-source embedded (Cortex-M4) implementations of Kyber768 and Saber masked at arbitrary order. The implementations based on the new bitsliced gadgets achieve a speedup of 1.8x for Kyber and 3x for Saber, compared to the implementation based on state of the art gadgets. The bottleneck of the bitslice implementations is the masked Keccak-f[1600] permutation.

Metadata
Available format(s)
PDF
Category
Implementation
Publication info
Published by the IACR in TCHES 2022
Keywords
Masking Lattice-based KEM Kyber Saber Bitslice PINI
Contact author(s)
olivier bronchain @ uclouvain be
gaetan cassiers @ uclouvain be
History
2022-07-14: revised
2022-02-12: received
See all versions
Short URL
https://ia.cr/2022/158
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2022/158,
      author = {Olivier Bronchain and Gaëtan Cassiers},
      title = {Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based {KEMs}},
      howpublished = {Cryptology {ePrint} Archive, Paper 2022/158},
      year = {2022},
      url = {https://eprint.iacr.org/2022/158}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.