Paper 2021/472

CryptoGram: Fast Private Calculations of Histograms over Multiple Users’ Inputs

Ryan Karl, Jonathan Takeshita, Alamin Mohammed, Aaron Striegel, and Taeho Jung

Abstract

Histograms have a large variety of useful applications in data analysis, e.g., tracking the spread of diseases and analyzing public health issues. However, most data analysis techniques used in practice operate over plaintext data, putting the privacy of users’ data at risk. We consider the problem of allowing an untrusted aggregator to privately compute a histogram over multiple users’ private inputs (e.g., number of contacts at a place) without learning anything other than the final histogram. This is a challenging problem to solve when the aggregators and the users may be malicious and collude with each other to infer others’ private inputs, as existing black box techniques incur high communication and computational overhead that limit scalability. We address these concerns by building a novel, efficient, and scalable protocol that intelligently combines a Trusted Execution Environment (TEE) and the Durstenfeld-Knuth uniformly random shuffling algorithm to update a mapping between buckets and keys by using a deterministic cryptographically secure pseudorandom number generator. In addition to being provably secure, experimental evaluations of our technique indicate that it generally outperforms existing work by several orders of magnitude, and can achieve performance that is within one order of magnitude of protocols operating over plaintexts that do not offer any security.

Metadata
Available format(s)
PDF
Category
Cryptographic protocols
Publication info
Published elsewhere. Minor revision. DCOSS 2021 INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS
Keywords
HistogramTrusted HardwareCryptography
Contact author(s)
tjung @ nd edu
History
2021-05-29: last of 2 revisions
2021-04-15: received
See all versions
Short URL
https://ia.cr/2021/472
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2021/472,
      author = {Ryan Karl and Jonathan Takeshita and Alamin Mohammed and Aaron Striegel and Taeho Jung},
      title = {{CryptoGram}: Fast Private Calculations of Histograms over Multiple Users’ Inputs},
      howpublished = {Cryptology {ePrint} Archive, Paper 2021/472},
      year = {2021},
      url = {https://eprint.iacr.org/2021/472}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.