
CryptoGram: Fast Private Calculations of
Histograms over Multiple Users’ Inputs

Ryan Karl, Jonathan Takeshita, Alamin Mohammed, Aaron Striegel, Taeho Jung
Department of Computer Science and Engineering, University of Notre Dame

Notre Dame, Indiana, USA
{rkarl,jtakeshi,amohamm2,striegel,tjung}@nd.edu

Abstract—Histograms have a large variety of useful appli-
cations in data analysis, e.g., tracking the spread of diseases
and analyzing public health issues. However, most data analysis
techniques used in practice operate over plaintext data, putting
the privacy of users’ data at risk. We consider the problem
of allowing an untrusted aggregator to privately compute a
histogram over multiple users’ private inputs (e.g., number of
contacts at a place) without learning anything other than the
final histogram. This is a challenging problem to solve when
the aggregators and the users may be malicious and collude
with each other to infer others’ private inputs, as existing black
box techniques incur high communication and computational
overhead that limit scalability. We address these concerns by
building a novel, efficient, and scalable protocol that intelligently
combines a Trusted Execution Environment (TEE) and the
Durstenfeld-Knuth uniformly random shuffling algorithm to
update a mapping between buckets and keys by using a determin-
istic cryptographically secure pseudorandom number generator.
In addition to being provably secure, experimental evaluations of
our technique indicate that it generally outperforms existing work
by several orders of magnitude, and can achieve performance
that is within one order of magnitude of protocols operating
over plaintexts that do not offer any security.

Index Terms—Histogram, Trusted Hardware, Cryptography

I. INTRODUCTION

The collection and aggregation of time-series user-generated
datasets in distributed sensor networks is becoming important
to various industries (e.g., IoT, CPS, health industries) due
to the massive increase in data gathering and analysis over
the past decade. However, the data security and individual
privacy of users can be compromised during data gathering,
and numerous studies and high profile breaches have shown
that significant precautions must be taken to protect user data
from malicious parties [1]–[3]. As a result, there is an increased
need for technology that allows for privacy-preserving data
gathering and analysis. Specifically, many applications based
on statistical analysis (e.g., crowd sensing, advertising and
marketing, health care analysis) often involve the collection
of user-generated data from sensor networks periodically
for calculating aggregate functions such as the histogram
distribution, sum, average, standard deviation, etc.. Due to
data security and individual privacy concerns involved in the
collection of consumer datasets, it is desirable to apply privacy-
preserving techniques to allow the third-party aggregators to
learn only the final outcomes.

In light of the COVID-19 crisis, the use of histograms in
epidemiology to learn about the distribution of data points

has taken on a new importance. In intervention epidemiology,
histograms are often used to convey the distribution of onsets
of the disease across discrete time intervals. This is called an
epidemic curve, and is a powerful tool to statistically visualize
the progress of an outbreak [4]. In the past, this technique has
been used to help identify the disease’s mode of transmission,
and can also show the disease’s magnitude, whether cases are
clustered, if there are individual case outliers, the disease’s
trend over time, and its incubation period [5]. Additionally, the
tool has assisted outbreak investigators in determining whether
an outbreak is more likely to be from a point source (i.e. a
food handler), a continuous common source (via continuing
contamination), or a propagated source (such as primarily
between people spreading the disease to each other) [6]. There
are many applications for secure histogram calculation in
the context of IoT and networked sensor systems, such as
smart healthcare, crowd sensing, and combating pandemics
(we discuss these in more detail in Section II).

Despite the versatility and usefulness of histograms, research
into privacy-preserving histogram calculations has been largely
ignored by the broader privacy-preserving computation research
community. It should be said that in this context there are
important differences between supporting location privacy,
which requires hiding the location of the user participating
in the protocol and input data privacy, which requires hiding
the input value against the aggregator. It is possible to protect
location privacy by uploading dummy data to hide the user’s
location, but protecting input value privacy from an aggregator
is far more difficult, as one must build custom privacy-
preserving cryptographic techniques to guarantee each user’s
data is secure. In our scenario, running privacy-preserving
computations in a distributed setting is a challenging task,
since protocols operating over massive amounts of data must be
optimized for storage efficiency. Also, solutions must validate
the authenticity and enforce access control over the endpoints
involved in the calculations, ideally in real-time, and in spite
of frequent user faults. There are existing techniques, such as
secure multiparty computation (MPC) [7], fully homomorphic
encryption (FHE) [8], and private stream aggregation (PSA) [9],
that have been studied extensively in the past and might be used
as black boxes to privately compute a histogram over users’
data. However, prior work in these fields is not ideal for private
histogram calculation on a massive scale. MPC often requires
multiple rounds of input-dependent communication to be

1



performed, giving it high communication overhead [10]. FHE
protocols are known to be far more computationally expensive
than other private computation paradigms [11], making them
impractical for private histogram calculations. Existing work in
PSA, while having lower overhead [9], [12], is not ideally suited
to histogram calculation, as it (i) is predominantly focused on
pre-quantum cryptography, (ii) has limited scalability of users
due to the open problem of handling online faults, and (iii) is
often limited to simple aggregation (e.g., sum) only.

In contrast to existing works, our scheme CryptoGram is a
highly scalable and accurate protocol, with low computation
and communication overhead, that is capable of efficiently
computing private histogram calculations over a set of users’
data. In particular, CryptoGram is a non-interactive scheme
with high efficiency and throughput, that supports tolerance
against online faults without trusted third parties in the
recovery, extra interactions among users, or approximation in
the outcome, by leveraging a Trusted Execution Environment
(TEE). Note that TEEs have their own constraints in com-
munication/computation/storage efficiency that prevent them
from being used naively as a black box to efficiently compute
histograms, therefore naı̈vely using TEEs does not solve the
problem successfully. Our protocol consists of specialized
algorithms that minimize the amount of data sent into and
computed over inside the TEE, to reduce overhead and support
a practical runtime. CryptoGram contributes to the development
of secure ecosystems of collection and statistical analysis
involving user-generated datasets, by increasing the utility of
the data gathered to data aggregators, while ensuring the privacy
of users with a strong set of guarantees.

More specifically, we consider the problem of allowing a set
of users to privately compute a histogram over their collected
data such that an untrusted aggregator only learns the final
result, and no individual honest user’s data is revealed. In our
approach, users communicate exclusively with the untrusted
aggregator. We work in the malicious model and assume that
all users may collude with each other and/or the untrusted
aggregator. We want to guarantee that the untrusted aggregator
cannot learn any individual input from any honest user (this
implies if an untrusted aggregator corrupts or colludes with
a user to learn their input, this does not impact the privacy
of the honest users). All the untrusted aggregator can learn is
the output of the function, i.e. the number of users that have a
value within a certain histogram bucket. Further, we can prove
the messages users send to the aggregator are indistinguishable
from random. The main idea of our protocol is to leverage the
Durstenfeld-Knuth uniformly random shuffling algorithm [13]
to update the mapping between buckets and keys by using a
deterministic cryptographically secure pseudorandom number
generator similar to Rivest’s [14]. We have implemented a
proof-of-concept system and our experimental results indicate
CryptoGram generally outperforms existing work by several
orders of magnitude while achieving performance similar to
protocols operating over plaintexts that do not offer any security.

Our contributions are as follows:
1) We present a novel technique that combines uniformly

random shuffling with trusted hardware to minimize I/O
overhead and support private histogram calculations with
improved efficiency and strong privacy guarantees.

2) Our private histogram calculation scheme achieves a
strong cryptographic security that is provably secure. The
formal security proof is available in the appendix.

3) We experimentally evaluate our scheme (code available
at: https://github.com/RyanKarl/PrivateHistogram) and demon-
strate it is generally several orders of magnitude faster than
existing techniques despite the guarantee of provable security.

II. BACKGROUND AND APPLICATIONS

CryptoGram has several significant applications towards
smart healthcare and combating epidemics, such as public
health risk analysis, patient monitoring, and pharmaceutical
supply chain management. For example, this protocol can be
useful in determining the risk of a COVID-19 super spreader
event [15]. Informally, this is an event where there are a
large number of people that are in close physical proximity
(i.e. less than 6 feet) for a prolonged amount of time. Super
spreader events pose a threat to disease containment, as a single
person can rapidly infect a large number of other people. By
calculating a private histogram we can better understand the
risk while protecting privacy. For instance, if we assume the
untrusted aggregator is a public health authority (PHA) and
users represent people at a particular location, we can have
users calculate the number of people they come into contact
with for a prolonged period of time with less than 6 feet of
social distancing over discrete time intervals via Bluetooth.
Then, the users can report the number of contacts to the PHA,
which can learn the distribution of the contacts without being
able to discover the number of contacts each individual user
was exposed to. In this way, a PHA can learn which locations
pose more of a risk of super spreader events, and perhaps
devote more time and resources at these locations, instead of
areas of comparatively lower risk.

Many hospitals utilize wireless body area networks, to
monitor patients’ health status in an efficient manner, by collect-
ing and monitoring different physiology parameters including
blood pressure, electrocardiography and temperature [16]. In
addition, partial/spacial aggregate histogram data (which is the
aggregation of multiple users’ data at the same time point, i.e.
the distribution of cholesterol scores among a group of people
in the same region) is needed by pharmaceutical researchers to
support production processes. Furthermore, temporal aggregate
data (which is the aggregation of the same user’s data at
different time points, i.e. the highest cholesterol score for
a given week) is needed by certified hospitals to monitor
the health condition of outpatients and provide feedback in a
short time span [17]. CryptoGram can be used to support the
necessary privacy-preserving computation for these scenarios
in a way that does not require the communication power,
computation power, and storage resources of other approaches.

There are several other potential applications that can benefit
from this work, such as private marketing statistics calculations
(e.g., A/B testing), smart grid calculations, privacy-preserving

2



machine learning, etc.. Also, the underlying approach we
discuss here to compute histograms can be easily extended to
other functions, such as max, min, median, average, standard
deviation, percentile aggregation, ANOVA, etc. [17]. We leave
a formal discussion of this for future work.

III. RELATED WORK

Fully homomorphic encryption (FHE) is an encryption
technique that enables an analytical function to be computed
over encrypted data while outputting the same results in an
encrypted form as if the function was computed over plaintexts.
This technique is powerful, but it is known to be considerably
slower than other cryptographic methods [9]. To the best
of our knowledge, the only work investigating the direct
application of FHE to compute private histogram calculation
[18] leverages the BGV [8] cryptosystem to construct secure
protocols for a variety of basic statistical calculations, such as
linear regression, counting, histogram, etc.. While their work
is very interesting from a theoretical standpoint, it may have
limited usability in practice, as they report overall computation
time of approximately 15 minutes when computing a histogram
over only 40 thousand data points.

Secure multi-party computation (MPC) is a technique in
cryptography that allows for a group parties to jointly compute
a function over their inputs while keeping those inputs private.
Although it has been suggested that MPC can be leveraged [7]
to efficiently compute histograms, we found no formal work
specifically investigating this use case. Nevertheless, it is well
known that MPC is generally subject to high communication
delay in real life implementations, due to its underlying
complexity and multiple required communication rounds [9].

Private stream aggregation (PSA) is a paradigm of distributed
secure computing in which users independently encrypt their
input data and an aggregator learns the final aggregation result
of the private data but cannot infer individual data from the final
output. PSA is superior to other types of secure computation
paradigms especially in large-scale applications due to its
extremely low overhead, the ease of key management, and
because only a single round of input-dependent communication
must be performed per aggregation [9], [10], [12]. To the best
of our knowledge, there is only one existing PSA scheme
designed to support histogram calculation known as PPM-
HDA [17]. This system can calculate histograms by leveraging
the BGN [19] cryptoscheme and a data filtering method based
on numericalized prefixes, which negatively impacts run time.

In general, the respective techniques described above suffer
from high computational overhead and communication com-
plexity. Our own work can be thought of as a special purpose
type of encryption that avoids the drawbacks of the previous
approaches by leveraging trusted hardware (TEE).

Recently, there has been an interest in leveraging differential
privacy (DP) to support private histogram publishing where
the central publisher is a trusted entity [20]. In this problem,
solutions are proposed to prevent data inference from the
published histograms. By adding a carefully chosen distribution
of noise [21], one can prevent the public from inferring the

internal dataset from which the histograms are calculated, which
increases privacy at the expense of accuracy. This problem
and the technique are orthogonal to our own work, as we
focus on the security of the computation against untrusted
aggregator and not the privacy of the final result. That said,
DP-based approaches can complement our approach to prevent
the aggregator from inferring the distribution of users’ inputs.
We plan to investigate this in future work.

IV. PRELIMINARIES

Below we describe some preliminary information regarding
trusted hardware and TEEs useful for understanding our work
since it is an important building block in our framework.
Trusted hardware is a broad term used to describe any hardware
that can be certified to perform according to a specific set of
requirements, often in an adversarial scenario. One of the most
prevalent in modern computing is Intel SGX, a set of new
CPU instructions that can be used by applications to set aside
private regions of code and data. It allows developers to (among
other things) protect sensitive data from unauthorized access
or modification by malicious software running at superior
privilege levels [22]. To allow this, the CPU protects an isolated
region of memory called Processor Reserved Memory (PRM)
against other non-enclave memory accesses, including the
kernel, hypervisor, etc.. Sensitive code and data is encrypted
and stored as 4KB pages in the Enclave Page Cache (EPC), a
region inside the PRM. Even though EPC pages are allocated
and mapped to frames by the OS kernel, page-level encryption
guarantees privacy and integrity. In addition, to provide access
protection to the EPC pages, the CPU maintains an Enclave
Page Cache Map (EPCM) that stores security attributes and
metadata associated with EPC pages. This allows for strong
privacy guarantees if applications are written in a two part
model. Our framework can work with any form of TEE in the
domain of trusted hardware, but we chose the Intel SGX for
our concrete instantiation.

Applications must be split into a secure part and a non-
secure part. The application can then launch an enclave, that
is placed in protected memory, which allows user-level code
to define private segments of memory, whose contents are
protected and unable to be either read or saved by any process
outside the enclave. Enclave entry points are defined during
compilation. The secure execution environment is part of the
host process, and the application contains its own code, data,
and the enclave, but the enclave contains its own code and
data too. An enclave can access its application’s memory, but
not vice versa, due to a combination of software and hardware
cryptographic primitives. Only the code within the enclave can
access its data, and external accesses are always denied. When
it returns, enclave data stays in the protected memory [22].
The enclave is decrypted “on the fly” only within the CPU
itself, and only for code and data running from within the
enclave itself. This is enabled by an autonomous hardware unit
called the Memory Encryption Engine (MEE) that protects the
confidentiality and integrity of the CPU-DRAM traffic over a
specified memory range. The codes running within the enclave

3



is thus protected from being “spied on” by other code. Although
the enclave is trusted, no process outside it needs to be trusted.
Note that Intel SGX utilizes AES encryption, which is known
to be quantum secure [23]. Before performing computation on
a remote platform, a user can verify the authenticity of the
trusted environment. Via the attestation mechanism, a third
party can establish that correct software is running on an Intel
SGX enabled device and within an enclave [22].

V. DEFINITIONS AND PROTOCOL DESCRIPTION

A. Adversary Model

Our scheme is designed to allow a third party (referred to
as the aggregator) to perform the histogram calculation while
providing strong data security guarantees. In our adversary
model, the users ui ∈ U send ciphertexts to an untrusted
histogram aggregator that is equipped with a TEE. We work in
the malicious model, and assume that all users may collude with
each other and/or the untrusted aggregator, although the TEE
is trusted. Under such adversary models, we want to guarantee
that the untrusted aggregator cannot learn any individual input
from any honest user (this implies if an untrusted aggregator
corrupts or colludes with a user to learn their input, this does
not impact the privacy of the honest users). All the untrusted
aggregator can learn is the output of the histogram, i.e. the
number of users that have a value within a certain range.
Standard aggregator obliviousness [11], [12], which states the
aggregator and colluders should learn only the final result and
what can be inferred from their inputs, is guaranteed. More
specifically, we consider the case of a set of n users and a
single untrusted aggregator A. Each user i where 0 < i ≤ n−1
possesses a piece of data xi;t, corresponding to some timestamp
t. The aggregator wishes to calculate the histogram yt over
the distribution of the private values users send. Our scheme
provides privacy to individual users, preventing the aggregator
from learning their individual data even when compromising
or colluding with other users.

B. Protocol Definition and User/Aggregator Behavior

Our protocol is composed of three algorithms.
� Setup(�; · · · ): Takes a security parameter � as input,

along with any other required parameters (the number of
users n, etc.). Returns a set of parameters parms, users’
secret keys si; i ∈ [0; n−1], and the randomness generated
from the secret keys ri;t; i ∈ [0; n− 1].

� Enc(parms; xi;t; si; ri;t; t · · · ): Takes the scheme’s pa-
rameters, a user’s secret key si, the randomness generated
with si for the timestamp t denoted ri;t, and time-series
input xi;t, along with a timestamp t, and any other required
parameters. Returns an encryption ci;t of the user’s input
under the randomness generated from their secret key.

� Agg(parms; t; c0;t; · · · ; cn�1;t ): Takes the scheme’s pa-
rameters, a timestamp t, and the n time-series ciphertexts
from the users (with timestamp t). Returns the final his-
togram for timestamp t as yt = f(x0;t; x1;t; · · · ; xn�1;t),
where f is the function that computes the histogram.

Users will run Enc on their data, and send their results
ci;t to the aggregator. Then the aggregator calls Agg on the
ciphertexts c0;t; · · · cn�1;t it has collected to learn the histogram
result yt. In our scheme, the algorithm Setup is run in a trusted
manner via additional trusted third party, secure hardware, etc..

C. Security Definition

Informally, we wish to require that an adversary able to
compromise the aggregator and any number of other users is
unable to learn any new information about uncompromised
users’ data (this idea is known as aggregator obliviousness
[11], [12]). We define this below:

Definition 1 (Aggregator Obliviousness): Suppose we have a
set of n users, who wish to compute a histogram over their data
at a time point denoted timestamp t. A scheme � is aggregator
oblivious if no polynomially bounded adversary has more than
negligible advantage in the security parameter � in winning
the game below:

The challenger runs the Setup algorithm which returns the
public parameters parms to the adversary. Then the adversary
will guess which of two unknown inputs was a users’ data, by
performing the following queries:

Encrypt: The adversary sends (i; xi;t; si; ri;t; t) to the
challenger and receives back Enc(parms; si; t; xi;t; ri;t).

Compromise: The adversary argues i ∈ [0; n). The chal-
lenger returns the ith user’s secret key si to the adversary.

Challenge: The adversary may only make this query once.
The adversary argues a set of participants S ⊂ [0; n),
with i ∈ S not previously compromised. For each user
i ∈ S, the adversary chooses two plaintexts (xi;t); (~xi;t) and
sends them to the challenger. The challenger then chooses
a random bit b. If b = 0, the challenger computes ci;t =
Enc(parms; si; t; xi;t; ri;t) for every i ∈ S. If b = 1, the
challenger computes ci;t = Enc(parms; si; t; ~xi;t; ri;t) for
every i ∈ S. The challenger returns {ci;t}i2S to the adversary.

The adversary wins the game if they can correctly guess the
bit b chosen during the Challenge.

At a high level, the above definition says the aggregator
obliviousness holds if an adversary cannot distinguish between
Enc(parms; si; t; xi;t; ri;t) and Enc(parms; si; t; ~xi;t; ri;t)
for any input values xi;t; ~xi;t. Our goal is to design a scheme
that achieves the aggregator obliviousness.

Note, an adversary can learn information about a single
user’s data, by compromising the aggregator along with all
other users, and then decrypting the compromised users’ data
and computing the difference of the aggregator’s histogram and
the histogram of the compromised users’ data. Such situations
are inherent in many scenarios with powerful adversaries, and
are managed by building the security definition to require that
no additional information is learned in such a case [11].

D. Our Concrete Protocol Design

When using TEEs, sending data into and out of the enclave
can greatly increase overhead due to memory isolation. Also,
performing standard encryption operations (i.e. AES) on the
fly on user’s devices, or similar decryption operations inside

4



Algorithm 1: Durstenfeld-Knuth Shuffle

Result: Shuffled list L
Input: A list of values L;
for (var i = L.length – 1; i > 0; i – – ) do

index = random % (i + 1);
current = L[i];
swap = L[index];
L[i] = swap;
L[index] = current;

end

Algorithm 2: Cryptographically Secure PRNG

Result: Random number in range [0,q]
Input: A hash digest H;
for (var i = 0; i � H.length; i++) do

If (result[i] < 255 - (255 mod q))freturn result[i]g;
If (i � H.length)fH = HASH(H)g;

end

the enclave, can be expensive, especially in the context of IoT.
To overcome these challenges, we leverage the Durstenfeld-
Knuth uniformly random shuffling algorithm [13] to update the
mapping between buckets and keys by using a deterministic
cryptographically secure pseudorandom number generator
similar to that of Rivest [14]. This allows us to move most of the
computational work to the offline phase, so we can efficiently
process histogram calculations during the online phase, while
minimizing the amount of data that must be passed into the
TEE. Note, our technique is faster and more space efficient
than simply encrypting inputs and sending them directly to the
enclave (for Elliptic Curve Cryptography 64 bytes vs 1 byte for
ours per user). Also, shuffling is better than storing all possible
mappings locally, as the space complexity grows at a factorial
rate (10 buckets means 10! possible mappings). Our novel
approach allows us to efficiently pipeline the SGX enclave and
user computation, significantly increasing performance.

We need the following functionalities to build our protocol:
Setup(�) → Ki;t;S;B : In this subroutine, after inputting

the security parameter �, each user first performs attestation
with the aggregator’s Intel SGX, to verify it will faithfully
execute the protocol (this is a one time process). The TEE
generates a set of cryptographically secure random numbers
si ∈ S for each user ui ∈ U . Also, the mapping Ki;t associated
with each user ui between their keys ci;j;t where 1 ≤ j ≤ k
and buckets B = {b1; b2; : : : ; bk} is initialized (it is not strictly
necessary that the number of keys and buckets be the same).

Enc(Ki;t; xi;t; t) → ci;j;t : In this subroutine, we inspect
a mapping table Ki;t, for the value xi;t at timestamp t and
output the corresponding key ci;j;t.

Shuffle(Ki;t; t;R) → K̂i;t+1 : In this subroutine, we
perform an unbiased random shuffle over a mapping table
Ki;t for a time stamp t, given a set of random numbers R that
has at least many elements as the length of the table Ki;t. We
output the newly shuffled mapping table K̂i;t+1.

Random(si)→ R : In this subroutine, given a seed si, we
generate a cryptographically secure set of random numbers R.

AggrDec(Ki;t; t;Ct;Bt)→ B̂t: In this subroutine, for each

ci;j;t ∈ Ct we inspect the related mapping table Ki;t associated
with time stamp t, and using the provided key ci;j;t, determine
the corresponding input xi;t. We then increment the associated
bucket bj ∈ Bt where 1 ≤ j ≤ k where the final set of buckets
after all ci;j;t ∈ Ct have been processed is denoted B̂t.

We formally describe our protocol in Figure 1 for a single
location for simplicity, but can easily extend it to support
multiple locations, as long as we can synchronize the updates
to the mapping. We provide a high level discussion of our
protocol below, and omit timestamps to simplify notation.

Let M = {x1; x2; : : : ; xn} denote all n users’ private health
data, and B = {b1; b2; : : : ; bk} denote the buckets of the
histogram, where k is the number of buckets (we assume
the histogram’s number of buckets is agreed upon beforehand).
After the users attest the aggregator’s TEE is running properly,
the aggregator’s TEE generates a cryptographically secure
random number si for each user which will serve as the seed
for generating future random numbers.

This si is sent over a secure channel to each user. On the user
end and internally inside the TEE, the mapping Ki associated
with each user ui between their keys ci;j where 1 ≤ j ≤ k
and buckets B = {b1; b2; : : : ; bk} is initialized. On the user
end and internally inside the TEE, we apply the Durstenfeld-
Knuth shuffle over each mapping Ki to shuffle the mapping in
an unbiased way. This algorithm is described in Algorithm 1.
To ensure this shuffling is done in a cryptographically secure
manner, we can use a method similar to Rivest’s [14] secure
deterministic PRNG to shuffle that mapping in a way that is
indistinguishable from random. Our random number generator
is described in Algorithm 2.

Essentially this technique computes the cryptographic hash
(i.e. SHA) of the seed as HASH(si) to generate a random
number. To generate the next random number, we compute
the hash again as HASH(HASH(si)). Note that we do not
use the full SHA for each shuffle/swap, since in practice we
have a small number of buckets. With less than 256 buckets,
one byte of hash is sufficient for a swap. If we have less that
16 buckets, we can also shift the bits before continuing to
iterate over the byte array. Because both the TEE and each
user start with the same seed they will generate the same
synchronized random stream, and as a result, will generate the
same new random mapping after each run of the Durstenfeld-
Knuth shuffle. This means that for each round (time stamp) of
private histogram calculations that we want to precompute, we
should run one instance of the shuffle and store the updated
mapping. In practice, this step might occur overnight during
a period of down time when user’s devices are connected to
a power source. After computing the private value xi they
wish to send (number of close contacts in a time interval),
each user inspects their mapping table Ki to determine which
key represents the bucket to which their private value belongs.
Each user sends the appropriate key to the TEE for the given
timestamp. After receiving each user’s key ci the TEE can
use its internal mapping table to determine which bucket ui’s
private value belongs to and increment that bucket’s value
accordingly. After completing this for each user in U, the TEE

5



Protocol CryptoGram
Setup Phase): The TEE runs Setup and generates a cryptographically secure random number si for each user which will serve as the seed for generating
future random numbers. This is sent over a secure channel to each user ui 2 U. On the user end and internally inside the TEE, the mapping Ki,t

associated with each user ui between their keys ci,j,t where 1 � j � k and buckets Bt = fb1; b2; : : : ; bkg is initialized.
Offline Phase): The TEE and each user run the Random subroutine using their seeds si to generate their set of random numbers. They then run Shuffle
over their mapping Ki,t to precompute the mapping for each time stamp t as Ki,t for which they wish to precompute a mapping table.
Online Phase): After computing the private value xi,t they wish to send, each user ui 2 U runs Enc, and inspects their mapping table Ki,t for the
current time stamp t to determine which key which represents the bucket to which their private value belongs. Each user sends the appropriate key ci,j,t
to the TEE for the given round (timestamp).
Evaluation Phase): After receiving each user’s key ci,j,t the TEE can run AggDec and use its internal mapping table to determine which bucket ui’s
private value belongs to and increment that bucket’s value accordingly. After completing this for each ui 2 U, the TEE outputs the final histogram to
the untrusted aggregator A.

Fig. 1. Our Protocol

Fig. 2. Toy Example

outputs the final histogram to the untrusted aggregator A.

E. Toy Example

Our toy example is in Figure 2. With three buckets and
three users, the initial mapping is K1 = [c1;1 → b1; c1;2 →
b2; c1;3 → b3], K2 = [c2;1 → b1; c2;2 → b2; c2;3 → b3], K3 =
[c3;1 → b1; c3;2 → b2; c3;3 → b3]). Users 1, 2, and 3 decide to
send inputs 1, 1, and 3 respectively, and after looking up the
correct value in their local mapping tables, send c1;1; c2;1; and
c3;3 to the aggregator. The aggregator can send these into the
TEE, to decode these and increment the appropriate histogram
buckets accordingly. After completing the histogram calculation,
the users and aggregator will run the shuffle algorithm over their
mapping tables, and might generate the following new tables
for use during the next calculation: K1 = [c1;1 → b2; c1;2 →
b3; c1;3 → b1], K2 = [c2;1 → b3; c2;2 → b2; c2;3 → b1], K3 =
[c3;1 → b1; c3;2 → b3; c3;3 → b2]).

F. Proof of Security

We provide a formal proof of security in the appendix, and
provide a proof sketch here for completeness. Essentially, by the
security of the cryptographic hash function and the security of
generating a truly random seed, the random streams generated
by each user are indistinguishable from random. Because
these numbers are used to perform the shuffling algorithm,
the uniformly shuffled mapping is also indistinguishable
from random, and the adversary cannot deduce which key
corresponds to which input for each user for each round.
The semantic security of the ciphertexts ci;j;t generated in
our scheme follows directly from Theorem 1. Post-quantum
security follows from Theorem 1, and from the underlying post-
quantum security of AES encryption [22]–[24], which is used

by the Intel SGX Memory Encryption Engine to encrypt data
in the enclave (note we assume quantum secure signatures are
used during attestation, a forthcoming but not yet implemented
future feature of Intel SGX). Thus, the protocol is secure.
This protocol is naturally fault tolerant, as if a user fails to
respond this does not impact the calculation of the histogram
over the remaining users’ data. In practice, we can assign
a dummy value for users to send so that we can mask their
location, if we are calculating histograms for multiple locations
simultaneously.

VI. EXPERIMENTAL EVALUATION

A. Experiment Setting

To better understand the improvements gained in perfor-
mance, we experimentally evaluated our work when compared
to several baseline techniques. This is the best we can do
because a secure computation implementation for histogram
calculation does not exist in the literature. The vast majority of
existing work focus on the differential privacy in the histograms
disclosed by a trusted central server, which is orthogonal to
the problem in this paper where the aggregator is untrusted.

We ran experiments using data from the Tesserae project,
[25], which tracked the close (less than 6 feet) contact of 757
participants in office settings (concentrated around four major
organizations) across the USA by utilizing Bluetooth beacons
and sensors embedded in personal phones and wearables over
the course of a year 1. We compared our protocol to simple plain
histogram aggregation with no security guarantees and to simply
encrypting all user plaintexts using OpenSSL’s implementation
of AES with a 128-bit security level (which is common in
traditional PSA schemes [12]) and sending the corresponding
ciphertexts in to the Enclave to be aggregated into a histogram.
We also ran other simulations to compare our scheme to the
state of the art work in private histogram calculation [17].

We implemented our experiments using C++11, and version
2.10 of the Intel SGX Software Development Kit. Our exper-
iments were run on a computer running Ubuntu 18.04 with
an Intel(R) Xeon(R) W-1290P 3.70GHz CPU with 128 GB of
memory. We report the average runtimes over 50 trials of the
experiment in question. In general, our technique performs the
best in all scenarios, often by several orders of magnitude.

1We oversampled randomly from this dataset for experiments using large
numbers of users and/or locations.

6



(a) 10 Buckets Encryption Time (b) 20 Buckets Encryption Time (c) 30 Buckets Encryption Time

(d) 40 Buckets Encryption Time (e) 10 Users Encryption Time (f) 100 Users Encryption Time

(g) 1,000 Users Encryption Time (h) 10,000 Users Encryption Time

Fig. 3. Encryption Experimental Results

B. Comparison of Encryption

We first compare the encryption time of the respective
protocols and vary the number of buckets in the histogram. We
report results in Figure 3. We note that our technique is always
the fastest by at least multiple orders of magnitude. This makes
sense as our one time pad based method is considerably less
computationally expensive than AES encryption and the ECC
based techniques of PPM-HDA. Also, PPM-HDA makes use of
an interesting but expensive binary prefix encoding procedure,
which negatively impacts the overall run time. This trend
continues as we increase the number of locations participating
in the histogram calculation. Thus, we can conclude that in
secure histogram aggregation scenarios where encryption times
greatly impact the overall performance, our method offers the
best efficiency.

C. Comparison of Aggregation

We also compare the aggregation time of the respective
protocols, along with a plaintext implementation of aggregation
that offers no privacy guarantees, and vary the number of
buckets in the histogram. We report results in Figure 4.
Interestingly, in the best case, our method is within one order
of magnitude of the plaintext run time. This is not surprising,
as it has been documented [26] that code running inside
Intel SGX enclaves can achieve very high throughput, on par
with code running outside enclaves as long as the number of
expensive context switches between trusted and untrusted space
is minimized. We note that although the plaintext aggregation
technique is always the fastest, our method is consistently

the most efficient of the three privacy-preserving schemes,
often by several orders of magnitude. Again, this makes
sense, as our one time pad based method is considerably less
computationally expensive than AES encryption and the ECC
based techniques of PPM-HDA, which require the aggregator
to solve the discrete logarithm problem to successfully decrypt.
Again, PPM-HDA’s binary prefix encoding procedure negatively
impacts performance. This trend continues as we increase the
number of locations participating in the histogram calculation.
We conclude that in secure histogram aggregation scenarios
where aggregation times greatly impact the overall performance
(i.e. large number of users and locations), our method offers
the best efficiency.

VII. CONCLUSION

We considered the problem of allowing an untrusted party to
privately compute a histogram over multiple users’ data such
that the aggregator only learns the final result, and no individual
honest user’s data is revealed in the malicious adversary model.
In addition to being provably secure, experimental evaluations
of our technique indicate that it generally outperforms existing
methods by several orders of magnitude, and can achieve
performance that is within one order of magnitude of protocols
operating over plaintexts that offer no security guarantees.

ACKNOWLEDGEMENTS

This work was supported by the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA) via contract #2020-20082700002.
Any opinions, findings and conclusions or recommendations

7


