Cryptology ePrint Archive: Report 2020/696

An Efficient CRT-based Bit-parallel Multiplier for Special Pentanomials

Yin Li and Yu Zhang

Abstract: The Chinese remainder theorem (CRT)-based multiplier is a new type of hybrid bit-parallel multiplier, which can achieve nearly the same time complexity compared with the fastest multiplier known to date with reduced space complexity. However, the current CRT-based multipliers are only applicable to trinomials. In this paper, we propose an efficient CRT-based bit-parallel multiplier for a special type of pentanomial $x^m+x^{m-k}+x^{m-2k}+x^{m-3k}+1, 5k<m\leq 7k$. Through transforming the non-constant part $x^m+x^{m-k}+x^{m-2k}+x^{m-3k}$ into a binomial, we can obtain relatively simpler quotient and remainder computations, which lead to faster implementation with reduced space complexity compared with classic quadratic multipliers. Moreover, for some $m$, our proposal can achieve the same time delay as the fastest multipliers for irreducible Type II and Type C.1 pentanomials of the same degree, but the space complexities are reduced.

Category / Keywords: implementation / Chinese Remainder Theorem, hybrid multiplier, special pentanomial

Date: received 10 Jun 2020

Contact author: yunfeiyangli at gmail com

Available format(s): PDF | BibTeX Citation

Version: 20200610:172116 (All versions of this report)

Short URL: ia.cr/2020/696


[ Cryptology ePrint archive ]