Correlation-Intractable Hash Functions via Shift-Hiding
Alex Lombardi and Vinod Vaikuntanathan
Abstract
A hash function family is correlation intractable for a -input relation if, given a random function chosen from , it is hard to find such that is true. Among other applications, such hash functions are a crucial tool for instantiating the Fiat-Shamir heuristic in the plain model, including the only known NIZK for NP based on the learning with errors (LWE) problem (Peikert and Shiehian, CRYPTO 2019).
We give a conceptually simple and generic construction of single-input CI hash functions from shift-hiding shiftable functions (Peikert and Shiehian, PKC 2018) satisfying an additional one-wayness property. This results in a clean abstract framework for instantiating CI, and also shows that a previously existing function family (PKC 2018) was already CI under the LWE assumption.
In addition, our framework transparently generalizes to other settings, yielding new results:
- We show how to instantiate certain forms of multi-input CI under the LWE assumption. Prior constructions either relied on a very strong ``brute-force-is-best'' type of hardness assumption (Holmgren and Lombardi, FOCS 2018) or were restricted to ``output-only'' relations (Zhandry, CRYPTO 2016).
- We construct single-input CI hash functions from indistinguishability obfuscation (iO) and one-way permutations. Prior constructions relied essentially on variants of fully homomorphic encryption that are impossible to construct from such primitives. This result also generalizes to more expressive variants of multi-input CI under iO and additional standard assumptions.