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Abstract

A hash function family H is correlation intractable for a t-input relation R if, given a random
function h chosen from H, it is hard to find x1, . . . , xt such that R(x1, . . . , xt, h(x1), . . . , h(xt))

is true. Among other applications, such hash functions are a crucial tool for instantiating the
Fiat-Shamir heuristic in the plain model, including the only known NIZK for NP based on the
learning with errors (LWE) problem (Peikert and Shiehian, CRYPTO 2019).

We give a conceptually simple and generic construction of single-input CI hash functions
from shift-hiding shiftable functions (Peikert and Shiehian, PKC 2018) satisfying an additional
one-wayness property. This results in a clean abstract framework for instantiating CI, and also
shows that a previously existing function family (PKC 2018) was already CI under the LWE
assumption.

In addition, our framework transparently generalizes to other settings, yielding new results:

� We show how to instantiate certain forms of multi-input CI under the LWE assumption.
Prior constructions either relied on a very strong “brute-force-is-best” type of hardness
assumption (Holmgren and Lombardi, FOCS 2018) or were restricted to “output-only”
relations (Zhandry, CRYPTO 2016).

� We construct single-input CI hash functions from indistinguishability obfuscation (iO)
and one-way permutations. Prior constructions relied essentially on variants of fully ho-
momorphic encryption that are impossible to construct from such primitives. This result
also generalizes to more expressive variants of multi-input CI under iO and additional
standard assumptions.
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1 Introduction

The random oracle model [BR94] is a powerful but controversial paradigm in cryptography in which
the proof of security of a cryptographic scheme assumes that a certain publicly computable func-
tion H that is used in the scheme behaves like a random function to the adversary. The random
oracle model is hugely influential in designing concretely efficient cryptosystems, but is inher-
ently problematic theoretically: how could a public, and therefore completely predictable, function
behave in all aspects like a random function? Indeed, Canetti, Goldreich and Halevi [CGH98]
demonstrated cryptographic schemes that one could prove secure in the random oracle model, but
which are insecure no matter how one tries to instantiate the oracle with a concrete function (or
even a function chosen at random from an exponential-size family). Nevertheless, this negative
result and the notions introduced therein led to a long line of research that asked what concrete
properties of a random oracle are instantiable in the standard model (see, e.g., [CMR98] for an
early work in this direction), and opened the door to groundbreaking positive results two decades
later [CCR16,KRR17,CCRR18,HL18,CCH+19,PS19].

The key notion introduced in [CGH98] is that of correlation intractability (CI), which captures
a general and powerful form of cryptographic hardness for a hash family H. For any binary relation
R(x, y), a hash family H is correlation-intractable for R if it is computationally hard (given a hash
function h← H) to find an input x such that R(x, h(x)) is true. For this definition to make sense,
we require that the relation R is sparse: for any x, all but a negligible fraction of y do not satisfy
the relation with x.

For decades, there was little progress on building correlation-intractable hash functions in the
standard model outside of a few extremely simple cases (such as one-way functions). However,
there has been much recent work [CCR16,KRR17,CCRR18,HL18,CCH+19,PS19,BKM20,LV20]
on instantiating restricted but expressive variants of CI. Namely, these works made the following
simplifications:

� Starting with [CCR16,HL18], additional efficiency requirements were placed on the relation
R. For example, one can require that R(x, y) is decidable in (bounded) polynomial time.

� Starting with [CCH+19], the relation R was further specialized to represent an efficiently
computable function f . A hash family H is CI for f if it is hard, given h, to find an input
x such that h(x) = f(x).

While these restrictions may seem extreme, these limited forms of CI remain expressive and
powerful. In particular, even CI for efficiently computable functions has implications for the in-
stantiability of the Fiat-Shamir transform [FS87] in the standard model [DNRS99,BLV03,CCR16]
for constant-round public-coin interactive proof systems. Most notably, [CCH+19,PS19] construct
hash families H that are CI for efficiently computable functions under standard cryptographic as-
sumptions related to the learning with errors (LWE) problem, and use these hash families to build
the first lattice-based non-interactive zero-knowledge (NIZK) proof systems for NP.

Let us recall the [CCH+19, PS19] constructions at a high level. [CCH+19] gives a generic
construction using fully homomorphic encryption (FHE) [Gen09,BV11]. The construction is simple:
a hash function h ← H is parameterized by a FHE ciphertext Enc(g) for some (dummy) function
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g. To evaluate h(x), simply homomorphically evaluate g on x to obtain some ciphertext of the
form Enc(g(x)). One can show that this hash family is CI for a function f if the FHE scheme is
circular secure : since g is computationally hidden, we can replace it in the security proof with a
function g∗(x) = Decsk(f(x)) + 1 specifically designed to avoid f(x) at the ciphertext level.

While this construction is both simple and generic, it has the significant drawback that it
relies on the circular security (rather than semantic security) of the FHE, and therefore cannot be
proven secure under the plain LWE assumption. Peikert and Shiehian [PS19] then gave an ingenious
construction of CI based on plain LWE. Their construction uses the algebra of the [GSW13] FHE
scheme to give a special-purpose variant of the [CCH+19] approach that avoids reliance on circular
security. However, this requires making a number of changes to the hash function: at a high
level, they “downgrade” plain LWE-based GSW ciphertexts after evaluation to Regev “ciphertexts”
(where the plaintext space is Zq and decryption correctness is only approximate) with circular
dependencies. This results in a LWE-based CI hash family, but loses the conceptual simplicity of
the [CCH+19] construction.

1.1 Our Results and Techniques

Our main result is a new framework for constructing CI hash functions using a cryptographic
primitive called shift-hiding shiftable functions (SHSFs) [PS18], a twist on private constrained
pseudorandom functions [BW13,BGI14,KPTZ13]. A SHSF family is a function family {Fmsk} that
additionally supports the ability to delegate a constrained key skf that enables computation of the
map x 7→ Fmsk(x) + f(x), without revealing the “shift function” f . Shift-hiding shiftable functions
were originally introduced for the purpose of constructing private constrained PRFs, but have since
found several other applications [PS20,DVW20].

In a nutshell, we show that SHSFs are intimately tied to correlation intractability via an ex-
tremely short proof. We further develop this framework in three directions.

1. We obtain a conceptually simple construction of CI for functions based on LWE. This con-
struction can replace the FHE-based approach of [CCH+19,PS19] and shows that the prior
function family of [PS18] (constructed for an entirely different purpose) was already a good
CI hash family.

2. We show that our construction transparently generalizes to new variants of multi-input CI,
which is currently poorly understood.

3. We give additional instantiations of our framework (which are new, in both the single- and
multi-input settings) using indistinguishability obfuscation and other standard assumptions.

Moreover, we believe that our framework and new approach to constructing CI hash functions
may be useful for future progress on and understanding of this primitive.

Lifting CI. We begin with a description of (1). Our main technique is a lifting theorem (Theo-
rem 3.1) that allows us to construct CI hash functions for complex relations starting from CI hash
functions for simpler relations. In the single-input setting, it states that any SHSF family (for a
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function class F) satisfying a very weak form of correlation intractability is essentially already a
CI hash family for F .

Theorem 1.1 (Informal). Suppose that SHSF = {Fmsk} is a family of SHSFs for a function
class F , and suppose that Fmsk satisfies either of the following two one-wayness properties:

� Given msk, it is hard to find an element in F−1
msk(0), or

� Given msk and a uniformly random target r, it is hard to find an element in F−1
msk(r).

Then, the shifted evaluation algorithm of SHSF describes a hash family H that is correlation-
intractable for all functions f ∈ F .

The CI hash function is extremely simple to describe. Hash keys are shifted keys skZ for
the all-zero function Z, and hash function evaluation is simply the shifted evaluation using skZ
which computes exactly the function Fmsk. (Philosophically, the CI hash family constructed in this
theorem is a form of “obfuscated PRF evaluation” although shift-hiding functions are decidedly
more complex to construct than PRFs.) The proof of Theorem 1.1 is also simple.

Proof Sketch. If an adversary A, given a hash key skZ , finds an input x such that

Hash(x) := FskZ (x) = f(x) ,

then by the shift-hiding property of SHSF, A also produces such an x when given skf instead of
skZ . In that case, A solves the equation

f(x) = Fskf (x) = Fmsk(x) + f(x),

which is equivalent to the equation Fmsk(x) = 0. This yields a 0-inversion attack on Fmsk. The
“random target” version of the theorem holds by the same argument, using a shifted key skfr for
the function fr(x) = f(x)− r.

We note that Theorem 1.1 could be proved under a weaker one-wayness assumption, namely,
that it is hard to find an input x such that Fmsk(x) = 0, given a shifted key skf for any pre-
specified f ” (as opposed to being given msk in the clear). However, we phrase Theorem 1.1 under
the assumption that Fmsk is one-way (given msk in the clear) because this is a clean, f -independent
security property, which also makes it more amenable to instantiation/proof. In our constructions
below, we prove the stronger one-wayness property of Fmsk.

Instantiation from LWE. Given Theorem 1.1, it remains to construct an SHSF family satisfying
this one-wayness property. We show that a variant of the Peikert-Shiehian SHSF [PS18] satisfies
this.

Theorem 1.2 (Informal, see Theorem 4.1). Assuming the hardness of standard lattice problems
(LWE and 1-dimensional SIS variants), the [PS18] SHSF1 is one-way.

1Compared to [PS18], (1) our construction is slightly modified for ease of proof, and (2) particular parameter
settings are required.
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We now sketch our proof assuming some knowledge of LWE-based cryptography.

Proof Sketch. In the Peikert-Shiehian SHSF construction, msk = s ∈ Znq is an LWE secret, and

Fmsk(x) = bsAx + u ·G−1(Ax)ep ∈ Zµp

where G ∈ Zn×mq is the gadget matrix, u ∈ Zmq is a uniformly random row vector, Ax ∈ Zn×µq is
a matrix constructed out of (uniformly random) matrices A1, . . . ,A` using the gadget homomor-
phisms from [BGG+14], and b·ep denotes the rounding operation that (roughly speaking) keeps the
top log p bits of the argument and discards the rest. By [PS18], this family is shift-hiding under the
LWE assumption and (computationally) correct under the 1D-SIS assumption (Definition 2.15).

If the adversary finds an x such that Fmsk(x) = 0, there are two cases; the first case is when
G−1(Ax) is non-zero. This gives an approximate subset sum solution for the instance sG+u, that
is,

(sG + u)G−1(Ax) ∈ qZµ + [−q
p
,
q

p
]µ.

This violates (on whichever column of G−1(Ax) is nonzero) a natural one-dimensional variant of
SIS (Definition 2.12) that we show is as hard as worst-case lattice problems provided that p is large
enough2 (see Section 2.3.1).

The second case is when the adversary finds an x such that G−1(Ax) = 0, which implies that
Ax = 0. We show that the adversary cannot make this happen without violating SIS (again!)
Roughly speaking, we use the fact that if we program the matrices Ai = ARi + hiG where Ri are
matrices with small entries and h is the description of a constant function with image y 6= 0 ∈ Zµq ,
the following equation holds for each column a

(j)
x of Ax due to the gadget homomorphisms of

Boneh et al. [BGG+14]:
a(j)
x = Ar(j)

x + yju1

(where u1 is the first standard basis vector) for some r(j)
x that is a function of R1, . . . ,R`. We know

by assumption that Ax = 0. Since y 6= 0, this means that the adversary found a valid solution
Rx =

[
r

(1)
x . . . r

(µ)
x

]
to the (inhomogenous) SIS problem ARx = −u1y

> ∈ Zn×µq , which is hard
assuming that worst-case lattice problems are hard. This finishes the proof of one-wayness.

Combining Theorem 1.2 with Theorem 1.1, we already recover a similar result to [PS19]. That is,
assuming the hardness of standard lattice problems, there exists a hash family that is correlation-
intractable for all bounded-size functions. By appealing to [CCH+19], this also gives a lattice-
based NIZK argument system for NP. However, our approach leverages this new, conceptually
simple connection to SHSFs and shows that [PS18] were “most of the way” to LWE-based CI.
Besides the extremely simple bootstrapping theorem, the missing piece was whether a natural PRF
construction [PS18] satisfies a one-wayness property given msk in the clear. A similar question was
previously studied for the GGM PRF family [CK16], but does not appear to have been addressed
for other concrete PRF families.

Next, we describe how our techniques extend to give new feasibility results in two different
directions:

2Some care must be taken to set parameters so that the SHSF security reductions still hold for this choice of p.
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� They immediately generalize to setting of multi-input CI, and

� They allow for new generic instantiations based on indistinguishability obfuscation.

We remark that constructing (single- or multi-input) CI hash functions even assuming indis-
tinguishability obfuscation is far from straightforward. Indeed, the initial works [CCR16,KRR17,
HL18] in this line all made non-standard assumptions in addition to iO. Non-standard assump-
tions were required until the work of [CCH+19] which constructed single-input CI hash functions
under circular-secure LWE. However, they only managed to do this for a tiny subset of relations
that [CCR16,KRR17] achieved. In particular, replicating the results of [KRR17] or even [CCR16]
assuming only iO (plus standard assumptions) is a challenging open problem.

1.2 Applications: Multi-Input CI from LWE and CI from iO

So far, we have only discussed single-input CI; that is, we considered CI for relations with a
single input x and single corresponding output y. However, there is a natural generalization of
CI to relations with many input-output pairs: a hash family H is defined to be CI for a relation
R(x1, . . . , xt, y1, . . . , yt) if if it is computationally hard (given a hash function h← H) to find inputs
x1, . . . , xt such that (x1, . . . , xt, h(x1), . . . , h(xt)) ∈ R. In contrast to the single-input case, multi-
input correlation intractability (for any t ≥ 2) is a far less well-understood primitive. Perhaps the
simplest nontrivial example of multi-input CI is for the relation R where R(x1, x2, y1, y2) = 1 if
and only if y1 = y2 but x1 6= x2. A CI hash family for R is precisely a collision-resistant hash
family. However, most multi-input relations do not correspond to security notions that are simple-
to-understand or previously studied. CI for more general multi-input relations also has interesting
applications, including:

1. As a useful tool for the untrusted setup of public parameters [CCR16,Zha16]: Multi-input
CI hash functions allow n parties P1, . . . , Pn with inputs x1, . . . , xn to compute public out-
puts yi = H(xi) that can be used to generate public parameters for a multi-party protocol.
Correlation intractability of H is necessary to ensure that a “bad CRS” is not accidentally
(or maliciously) agreed on.

2. As a hash function in proof-of-work protocols [CCR16, CCRR18]: In the bitcoin proto-
col [Nak08], a miner succeeds in adding a block to the blockchain when she finds an x such
that y = H(x||Bi) starts with a specified number of zeroes (here, Bi is the i-th block and
once found, y is placed in the next block Bi+1). A very desirable property in this setting
is that a single miner (or collection of colluding miners) cannot find multiple consecutive
blocks with significantly less effort than finding them sequentially. This property can be
formalized as a quantitatively precise3 variant of multi-input CI. For example, in the case of
two consecutive blocks, simplifying the setting a little, we require a 2-input CI for the relation

3As noted in [CCR16], CI following the (poly, negl) security definition framework is insufficient for this application.
Instead, these protocols desire a concrete “moderately small” probability of breaking CI and a tight gap between honest
and adversarial parties’ probabilities of doing so in a fixed runtime. We do not attempt to address this subtlety in
this work.
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R where R(x1, x2, y1, y2) = 1 iff y1 and y2 start with a pre-specified number ` of zeroes, and
y1 is a suffix of x2.

Unfortunately, multi-input CI has so far proved hard to achieve. In particular, the constructions
of [CCR16,KRR17,CCRR18,CCH+19,PS19,BKM20] are only known to achieve single-input CI.
Holmgren and Lombardi [HL18] do achieve multi-input CI for a large class of relations that they
call locally sampleable relations. However, they require both an indistinguishability obfuscation
(iO) scheme [BGI+01] as well as an “optimally-secure” one-way product function [HL18]. While iO
can now be achieved under relatively standard assumptions [JLS21,GP21,BDGM20,WW21], the
latter is a very strong “brute force is optimal”-type assumption. Zhandry [Zha16] constructed a
hash family satisfying a very special form of multi-input CI called “output intractability”. Output
intractability is a form of CI for relations R(x1, . . . , xt, y1, . . . , yt) that depend only on the yi, which
captures some variants of application (1) above. On the plus side, the construction is based on
the exponential hardness of the Diffie-Hellman problem.4 To summarize, multi-input CI is either
known for a small class of relations under standard assumptions, or for a larger class of relations
under very strong assumptions. We refer the reader to Section 1.3 for more details and further
comparisons.

Multi-Input CI via Shift-Hiding. One consequence of our shift-hiding technique is a collection
of feasibility results for multi-input correlation intractability based on standard assumptions. We
obtain two flavors of results: constructions from standard (lattice) assumptions, and constructions
from indistinguishability obfuscation.

Our results are obtained via a generalization of our lifting theorem (Theorem 1.1) to multi-
input relations. This gives us three new constructions of multi-CI hash functions under different
assumptions:

� Our first construction considers the shifted linear relation

Rlin = {(x1, . . . , xt, y1, . . . , yt) :
∑

wiyi =
∑

wif(xi) (mod p)}

where p is some large integer (roughly 2λ), wi are small weights and f is an arbitrary
polynomial-time computable function. We construct a multi-input CI hash function for Rlin

under the same lattice assumptions as in the single-input case (all approximation ratios are
larger by a factor of t).

� Our second and third constructions consider the shifted general relation

R = {(x1, . . . , xt, y1, . . . , yt) : R0(y1 − f(x1), . . . , yi − f(xi)) = 1}

where R0 is any polynomial-time decidable relation. In particular, our second construc-
tion achieves a multi-input CI hash function for R under subexponential iO, subexponential
OWFs, and (sufficiently) lossy functions.

4Moreover, given an inverse-subexponential lower bound on the sparsity of the relation, Zhandry’s construction
is secure under (the more standard) sub-exponential DDH.
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Our Generalized Lifting Theorem. Given any output-only relation R0, we say that a hash
family H is R0-output intractable if it is hard (given h) to find distinct5 inputs x1, . . . , xt such
that (y1, . . . , yt) ∈ R0 for yi = h(xi). Output intractability as a standalone property (like collision-
resistance) is known to be instantiable based on standard cryptographic assumptions (e.g., lossy
functions [PW08]) as we discuss in Section 1.3. Our generalization of Theorem 1.1 states that
SHSFs that are output-intractable lead to interesting new CI constructions.

Theorem 1.3 (Also see Theorem 3.1). Suppose that SHSF is a shift-hiding shiftable function
family. Assume that it is hard, given msk, to find distinct x1, . . . , xt such that R0(y1, . . . , yt) = 1

where yi = Fmsk(xi) and R0 is some polynomial-time computable relation. Then, there is a
CI hash family for the shifted output relation

R = {(x1, . . . , xt, y1, . . . , yt) : R0(y1 − f(x1), . . . , yi − f(xi)) = 1}

The proof of Theorem 1.3 follows from that of the single-input CI casemutatis mutandis. Thus,
all that remains is to construct SHSFs that are output-intractable. We show three constructions.

Instantiation from LWE. To obtain a form of multi-input CI from LWE, we combine Theo-
rem 1.3 with a generalization of Theorem 1.2:

Theorem 1.4. Under standard lattice assumptions, there exists a SHSF family SHSF satisfy-
ing the following form of correlation intractability: for every nonzero vector w ∈ {−1, 0, 1}t,
it is hard (given msk) to find t distinct inputs x1, . . . , xt such that∑

i

wi · Fmsk(xi) = 0,

where the sum is computed modulo some (large enough) integer p.

Our modification of the Peikert-Shiehian [PS18] construction satisfies this more general form
of output intractability (for small linear equations), although the proof (in “Case 2” above) is more
complicated (see Section 4.5). Note that this is a strict generalization of both single-input CI for
functions (where t = 1, w = 1) and collision-resistance (where t = 2, w = (−1, 1) and f is the
constant function). Previously, this form of correlation intractability was only known assuming iO
and (extremely hard) one-way product functions [HL18].

Instantiation from IO + lossiness. Our second construction achieves correlation intractability
for shifted R0-output relations for a large class of R0 simultaneously (as opposed to linear R0 as
in the LWE case above). It can be thought of as a (non-black-box) combination of our approach
with a construction due to Zhandry [Zha16] of output-intractable hash functions.

Theorem 1.5. Assume the existence of subexponential iO, subexponential OWFs, and lossy
functions with input domain {0, 1}n with a range of size ≤ 2` in lossy mode. Then, there
exists a hash family H that is CI for all (efficiently decidable) shifted t-ary output relations
with sparsity at most 2−t`.

5For the relation
∑
i wiyi = 0 implicitly described above, it is enough to assume that the inputs xi are not all equal

for the relation to be sparse. We elaborate on this weakening of output intractability as compared to [Zha16,HL18]
in Section 2.
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As a corollary, we conclude that additionally assuming the existence of extremely lossy func-
tions [Zha16], there is a hash family H that is CI for all (efficiently decidable) shifted t-ary output
relations with sparsity 2−ω(t). As another corollary, we note that by combining Theorem 1.5
with [CCH+19], we obtain a construction of dual-mode NIZKs for NP based on iO, (injective) lossy
functions, and lossy encryption. This closely matches the assumptions used in the work [HU19]
but with a simpler construction. The corollary follows because the hash family from Theorem 1.5
satisfies “somewhere statistical correlation intractability.”

A Separation between Single-Input and Multi-Input CI. Finally, we show that single-
input and multi-input CI hash functions are fundamentally different primitives by demonstrating
a separation between them. This follows from our third new CI instantiation, which is interesting
even in the single-input setting.

Theorem 1.6. Assume the existence of subexponentially secure indistinguishability obfusca-
tion, subexponentially secure one-way functions, and a hash family H such that H is R0-
output intractable, and for a random input X, hk(X) is 2−n-indistinguishable from uniform
(even given k). Then, there exists a hash family that is CI for shifted R0-relations.

This theorem says that assuming subexponential iO and one-way functions, shifted-CI for R0

can be constructed (semi-)generically from output intractability for R0. Theorem 1.6 is proved
by combining Theorem 1.3 with a construction of an R0-output intractable SHSF using iO, punc-
turable PRFs, and an output-intractable hash function satisfying the above statistical requirement.

We note that as a corollary to Theorem 1.6, we obtain a construction of single-input CI for all
efficient functions from iO and one-way permutations.6

Corollary 1.7. If subexponential iO, subexponential OWFs, and (polynomially-secure) OWPs
exist, then there exists a hash family that is CI for all efficient functions, that is, relations
R(x, y) which is true iff y = f(x).

Corollary 1.7 follows from Theorem 1.6 by setting the output-intractable hash function H to
be hk(x) := f(x) + k, where f is a one-way permutation7 and k is a uniformly random key. This
construction is notable in that it separates single-input correlation intractability (theoretically)
from two-input correlation intractability: due to an impossibility result of Asharov-Segev [AS15],
it is known that there is no (black-box) construction of CRHFs from iO and one-way permutations
(even with exponential security). A similar separation was shown in [HL18], but the “positive result”
required assuming optimally hard one-way functions along with iO to obtain CI for all efficient
functions (and more). In contrast, our construction is based on assumptions in the quantitatively
standard regime.

6As is common [GR13], one must be careful about which definitions of “one-way permutation” suffice for this
result. In our proof (which suffices for the separation), we assume that the one-way permutation has domain {0, 1}n.
It turns out that the proof can be made to work for discrete log-based one-way permutations, but does not appear
to work for the (trapdoor) permutations constructed based on iO [BPW16].

7It suffices for f to be a OWF whose output distribution is close to uniform, e.g., a surjective regular OWF.
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1.3 Additional Related Work Discussion

Multi-Input Correlation Intractability We summarize what was previously known regarding
multi-input correlation intractability:

� For subexponentially sparse output relations R0, output intractability for R0 can be con-
structed based on lossy functions (following [Zha16], but relying on less extreme forms of
lossiness). Based on “extremely lossy functions”, Zhandry [Zha16] constructs a hash family
that is CI for all sparse (efficiently decidable) output relations.8

� Similarly to Zhandry [Zha16], the construction x 7→ p(Hk(x)) (where Hk is a sufficiently
shrinking collision-resistant hash function and p is sampled from a t-wise independent hash
family) also yields output intractability for subexponentially sparse (and efficiently decidable)
output relations.

� Holmgren and Lombardi [HL18] construct output-intractable hash functions for all sparse
(even inefficient) R based on “one-way product functions” (OWPFs), OWFs satisfying a quan-
titiatively extreme assumption about the hardness of inverting many one-way function chal-
lenges in parallel. OWPFs (in different parameter regimes) are existentially incomparable
to lossy functions and CHRFs. Under sufficiently strong assumptions, these hash families
achieve quantitiatively better security than is possible for the previous two constructionss.

� Holmgren and Lombardi [HL18] also construct correlation-intractable hash families for rela-
tions R(x,y) that include all shifted output relations. However, they rely on both indistin-
guishability obfuscation and OWPFs (as above).

Comparison with Peikert-Shiehian [PS19]. [PS19] constructs single-input CI based on the
LWE (or SIS) assumption. Their construction improves upon the construction of [CCH+19] based
on circular-secure FHE: by making use of special properties of the [GSW13] (and related) FHE
schemes, they can remove the need for a circular ciphertext Enc(sk, sk) in a specific GSW-based
construction. By comparison, we show that any SHSF that is one-way is also CI for bounded
functions, and that (essentially) the [PS18] SHSF is one-way. It does not seem easy to abstract
out a simple, generic property of the [PS19] hash function that implies multi-input correlation
intractability.

Given our generalization to multi-input CI, it is also reasonable to ask whether the [PS19] hash
function also satisfies a form of multi-input CI. In fact, it appears likely that it satisfies CI for
shifted-sum relations (just like our construction). However, a proof of this fact requires some of
our analysis in the security proof of our multi-input CI construction (Theorem 1.4).

Comparison with Brakerski-Koppula-Mour [BKM20]. We also note that our construction
shares some conceptual similarity to the recent CI construction of [BKM20]. We highlight the
similarity here:

8This is a special case of Zhandry’s actual result; we refer the reader to [Zha16] for more details.
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� In [BKM20], they show that a hash function x 7→ hk(x) − r (for a random r) is CI for
a (low-degree) function f by writing down an indistinguishable key distribution kf so that
hkf (x)−f(x) lies in some sparse set Sf . Then, hkf (x)−f(x) = r typically has no (information
theoretic) solution.

� In our construction, we show that a hash function x 7→ hk(x) − r is CI for f by writing
down an indistinguishable key distribution kf so that hkf (x) − f(x) is the evaluation of a
PRF PRFs(x). Then, as long as it is computationally hard to find a PRF inverse F−1

s (r)

(i.e. as long as Fs is one-way), we can conclude that the equation hkf (x) − f(x) = r is
computationally hard to solve.

2 Preliminaries

Some of the preliminaries below are adapted from [HL18,CCH+19].

2.1 Hash Functions and Correlation Intractability

Definition 2.1. For a pair of efficiently computable functions (ν(·), µ(·)), a hash family with in-
put length ν and output length µ is a collection H = {hλ : {0, 1}κ(λ)×{0, 1}ν(λ) → {0, 1}µ(λ)}λ∈N
of keyed hash functions, along with a pair of p.p.t. algorithms:

� H.Gen(1λ) outputs a hash key k ∈ {0, 1}κ(λ) describing a hash function h.

� H.Hash(k, x) computes the function hλ(k, x) = h(x). We may use the notation h(x) to
denote hash evaluation when the hash family is clear from context.

Following [HL18,CCH+19], we consider the security notion of correlation intractability [CGH98]
for multi-input relations.

Definition 2.2 (Multi-Input Correlation Intractability). For a given relation ensemble R =

{Rλ ⊆ ({0, 1}ν(λ))t(λ) × ({0, 1}µ(λ))t(λ)}, a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) →
{0, 1}µ(λ)} is said to be R-correlation intractable with security (s, δ) if for every s-size adversary
A = {Aλ},

Pr
k←H.Gen(1λ)

x=(x1,...,xt)←A(k)

[(
x,y = (h(x1), . . . , h(xt))

)
∈ R

]
= O(δ(λ)).

We say that H is R-correlation intractable with security δ if it is (λc, δ)-correlation intractable
for all c > 1. Finally, we say that H is R-correlation intractable if it is (λc, 1

λc )-correlation
intractable for all c > 1.

A random oracle is correlation intractable for relations that are sparse, defined as follows:

Definition 2.3 (Sparsity). A relation ensemble R = {Rλ ⊆ ({0, 1}ν(λ))t(λ) × ({0, 1}µ(λ))t(λ)}, is
ρ(λ)-sparse if for every x ∈ ({0, 1}ν(λ))t(λ),

Pr
y←({0,1}µ(λ))t(λ)

[(x,y) ∈ R] ≤ ρ(λ).

We say that R is sparse if it is negl(λ)-sparse.
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In this work, we focus on distinct input relations, i.e., relations R such that for any (x,y) ∈ R,
we have that xi 6= xj for any pair (i, j).

We now describe some special cases of the above definition. Two of them (CI for efficient
functions and Output Intractability) have been discussed in prior works [Zha16, HL18, CCH+19,
PS19], while a third – which we call “CI for shifted relations” – we introduce in this work.

Definition 2.4 (Correlation Intractability for Functions). For a given function ensemble F =

{fλ : {0, 1}ν(λ) → {0, 1}µ(λ)}, a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → {0, 1}µ(λ)} is said
to be f -correlation intractable if it is R-correlation intractable for the single-input relation

R =
{

(x, f(x)) : x ∈ {0, 1}∗
}
.

Formally, the requirement is that for every poly-size A = {Aλ},

Pr
k←H.Gen(1λ)
x←A(k)

[
h(k, x) = f(x)

]
= negl(λ).

Definition 2.5 (Output Intractability). For a given relation ensemble Rout = {Rout,λ ⊆ ({0, 1}µ(λ))t(λ)},
a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → {0, 1}µ(λ)} is said to be Rout-output intractable
if it is R-correlation intractable for the relation

R =
{

(x,y) : y ∈ Rout and xi 6= xj for all i 6= j
}
.

Formally, the requirement is that for every poly-size A = {Aλ},

Pr
k←H.Gen(1λ)

x=(x1,...,xt)←A(k)

[
xi 6= xj for all i 6= j and

(
y = (h(x1), . . . , h(xt)) ∈ Rout

]
= negl(λ).

In this work, we also consider a strengthening of Rout-output intractability (as defined above)
in which the inputs x1, . . . , xt are not required to be distinct; of course, this larger relation must
still be sparse in order for correlation intractability to be feasible.

Definition 2.6 (Not-All-Equal (NAE) Output Intractability). For a given relation ensemble
Rout = {Rout,λ ⊆ ({0, 1}µ(λ))t(λ)}, a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → {0, 1}µ(λ)} is
said to be not-all-equal Rout-output intractable if it is R-correlation intractable for the relation

R =
{

(x,y) : y ∈ Rout and x1, . . . , xt are not all equal
}
.

When t is a constant, not-all-equal output intractability for a t-output relation Rout follows
from standard output intractability for ≤ tt different relations defined based on Rout (there is one
distinct-input relation for each partition of [t]). When t is superconstant it becomes better to prove
the security property directly (without incurring a tt security loss).

Definition 2.7 ((Not-All-Equal) Multi-Input CI for Zp-Shifted Relations). Let p = p(λ) be an
efficiently computable function of λ.
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For a given function ensemble F = {fλ : {0, 1}ν(λ) → Zµ(λ)
p } and relation ensemble Rout =

{Rout,λ ⊆ (Zµ(λ)
p )t(λ)}, a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → Zµ(λ)

p } is said to
be (Rout, f)-correlation intractable (respectively,not-all-equal (Rout, f)-correlation intractable) if it is
correlation intractable for the shifted relation

R =
{

(x,y) : xi 6= xj for all i 6= j and (y1 − f(x1), . . . , yt − f(xt)) ∈ Rout

}
,

respectively,

RNAE =
{

(x,y) : x1, . . . , xt are not all equal (y1 − f(x1), . . . , yt − f(xt)) ∈ Rout.
}

We note that Definition 2.7 generalizes both Definition 2.4 and Definition 2.5/Definition 2.6. In
particular, when p(λ) is a power-of-two, Definitions 2.5 and 2.6 can be recovered (identifying
Zµp = {0, 1}µ log p) by setting f to be the all-zero function, while Definition 2.4 can be recovered by
setting Rout = {0µ ∈ Zµp = {0, 1}µ log p}.

Finally, we describe an interesting special case of Definition 2.7 that we securely instantiate
under LWE.

Definition 2.8 (Weighted Sum Resistance mod p). Let t = t(λ). A hash function family H with
output space Zµp is weighted sum resistant mod p with weights w ∈ {−1, 0, 1}t if it is output
intractable for the t-output relation

Rout =
{
y :

t∑
i=1

wiyi = 0µ (mod p)
}
.

Similarly, it is not-all-equal weighted sum resistant mod p with weights w if it is NAE
output intractable for Rout.

We say that H is weighted sum resistant if it is sum resistant for all nonzero weight vectors
w, and NAE-weighted sum resistant if it is NAE-sum resistant for all weight vectors w such that∑

iwi 6= 0. As shown in Section 4, our LWE-based hash family satisfies (NAE) multi-input CI for
(both variants of) shifted weighted sum resistance mod p with p ≈ 2λ.

2.2 Shift-Hiding Shiftable Functions

We consider a weakening of the original definition of Peikert and Shiehian [PS18] that does not
give the adversary oracle access to the SHSF. We also consider a modified definition with exact
correctness rather than approximate correctness (this corresponds to the “rounded version” of
the [PS18] construction).

Definition 2.9 (Shift-Hiding Shiftable Functions [PS18]). Let p = p(λ) be an efficiently com-
putable function of λ. We define a family of shift-hiding shiftable functions with input
space {0, 1}ν(λ) and output space Zµ(λ)

p = {0, 1}µ(λ) log p(λ) for arbitrary polynomial functions
(ν(λ), µ(λ)).

For a given class C of function ensembles F = {fλ : {0, 1}ν(λ) → Zµ(λ)
p }, a shift-hiding

shiftable function family SHSF = (Gen, Shift,Eval, SEval) consists of four PPT algorithms:
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� Gen(1λ) outputs a master secret key msk and public parameters pp.

� Shift(msk, f) takes as input a secret key msk and a function f ∈ F . It outputs a shifted
key skf .

� Eval(pp,msk, x), given a secret key msk and input x ∈ {0, 1}ν(λ), outputs an evaluation
y ∈ Zµ(λ)

p .

� SEval(pp, skf , x), given a shifted key skf and input x ∈ {0, 1}ν(λ), outputs an evaluation
y ∈ Zµ(λ)

p .

We will sometimes use the notation Fsk(x) to mean either Eval(sk, x) or SEval(sk, x) when the
context is clear.

We require that SHSF satisfies the following two properties:

� Computational Correctness: for any function f ∈ C, given public parameters pp and
a shifted key skf ← Shift(msk, f) (for (pp,msk)← Gen(1λ)), it is computationally hard to
find an input x ∈ {0, 1}ν(λ) such that Eval(skf , x) 6= Eval(msk, x) + f(x) (mod p). In other
words, the equation

Fskf (x) = Fmsk(x) + f(x)

holds computationally (mod p).

� Shift Hiding: for any pair of functions f, g ∈ C,

skf ≈c skg,

where skf ← Shift(msk, f), skg ← Shift(msk, g), and msk← Gen(1λ).

2.3 Learning with Errors and (One-Dimensional) Short Integer Solution

We begin with definitions of the learning with errors (LWE) and sort integer solution (SIS) prob-
lems, following Peikert’s survey [Pei16]. We refer the reader to [Pei16] for definitions of worst-case
lattice problems such as SIVP and GapSVP.

Definition 2.10 (Learning with Errors). For integers n,m, q ∈ N and error distribution χ, the
learning with errors problem LWEn,m,q,χ is defined to be the following average-case decision
problem: distinguish between a uniformly random matrix-vector pair

(A← Zn×mq ,u← Zmq )

and an approximate linear equation

(A← Zn×mq , sA + e)

with s← Znq and e← χm.

Definition 2.11 (Short Integer Solution). For integers n,m, q,B ∈ N, the short integer solution
problem SISn,m,q,B is defined to be the following search problem: given a uniformly random
matrix

A← Zn×mq

find a vector v ∈ Zmq such that ||v||∞ ≤ B and Av = 0n.

15



2.3.1 One-Dimensional SIS Variants

We also explicitly consider two different “one-dimensional” variants of SIS that come up in our
security proofs. One variant is the “1D-R-SIS problem” as defined by [BV15]; the other is a
variant implicitly considered by [Ajt96] and explicitly considered by [Reg04,BV15] that we will call
“(approximate) Zq-SIS.”9

These problems are no easier to solve than LWE, but for clarity, as was done in [BV15,PS18],
it is convenient to define them separately.

Definition 2.12 (Approximate Zq-SIS). For positive integers q,m,B,E ∈ N, the approximate
Zq-SIS problem is defined as follows: given a uniformly random vector v ∈ Zmq , find a nonzero
vector z ∈ Zm such that:

� ||z||∞ ≤ B; and

� 〈v, z〉 (mod q) ∈ [−E,E].

In [Reg04, BV15], it is shown that Zq-SIS is as hard as worst-case lattice problems in the
following parameter regime (among others):

Fact 2.13. If q =
∏n
i=1 pi and each pi ≥ B ·ω(

√
mn log(n)), then Zq-SISm,q,B,E=B is as hard as

SIVPB·Õ(
√
mn) and GapSVPB·Õ(

√
mn) for n-dimensional lattices.

However, we will be interested in a variant of approximate Zq-SIS where E is very large com-
pared to B; therefore, we appeal to a simple modulus switching [BV11] reduction.

Claim 2.14. The approximate Zq-SIS problem with parameters (q,m, β, η) reduces to the
approximate ZQ-SIS problem with parameters (Q,m,B,E) if β ≥ B and

η

q
≥ E

Q
+
mB

Q
+
mB

q

We will invoke this claim (see Section 4.5) in a setting where Q� q (in fact, we will set q � Q
E

so that the first term in this sum is insignificant).

Proof. Given v ∈ Zmq (interpreted as an integer vector), define V ∈ ZmQ so that each coordinate

satisfies Vi =
⌈
Q
q vi + ri

⌋
, where ri is a uniformly random real number in the range [0, Qq ]. We then

have that
V =

Q

q
v + ε

for a vector ε ∈ Rm such that ||ε||∞ ≤ 1 + Q
q . Note that V is a uniformly random element of ZmQ ,

so the reduction is valid. Now, assuming that the ZQ-SIS problem is solved correctly, we are given
a vector z such that

〈V, z〉 = Q · `+ e

9The problem called “1D-SIS” in [BV15] is a special case of approximate Zq-SIS; the two error parameters (B,E)

in Definition 2.12 below are set to be equal to each other in [BV15].
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and |e| ≤ E. Then,
〈v, z〉 = q`+

q

Q
e− q

Q
〈ε, z〉,

which breaks approximate Zq-SIS with parameters (q,m,B, η) as long as

η ≥ q

Q
E +m

q

Q
(1 +

Q

q
)B

=
q

Q
E +

q

Q
·mB +mB

In addition to approximate Zq-SIS, we consider a slight variant of 1D-R-SIS [BV15] due to [BKM17].

Definition 2.15 (1D-R-SIS [BV15, BKM17]). Let p ∈ N and p1 < p2 < . . . < pn be pairwise
coprime and relatively prime to p. Let q = p ·

∏n
i=1 pi. Then, for positive integers m ∈ N and

B, the 1D-R-SISm,p,q,B problem is as follows: given a uniformly random vector v ∈ Zmq , find
a nonzero vector z ∈ Zm such that

� ||z||∞ ≤ B; and

� 〈v, z〉 (mod q) ∈ q
p · (Z + 1

2) + [−B,B].

Fact 2.16. ( [Ajt96,BV15,BKM17]) For sufficiently large pi ≥ B · poly(n, log q), solving 1D-
R-SIS is at least as hard as approximating SIVP and SVP on arbitrary n-dimensional lattices
to within B · poly(n) factors.

3 Correlation Intractability from Shift-Hiding Shiftable Functions

In this section, we show that shift-hiding shiftable functions (Definition 2.9) that are output in-
tractable (Definitions 2.5 and 2.6) can be used to construct correlation-intractable hash functions
for shifted relations (Definition 2.7). As a special case, this shows that SHSFs that are hard to
invert yield correlation-intractable hash functions for all circuits (Definition 2.4) supported by the
SHSF function class C. In other words, SHSFs allow us to lift a form of output intractability to a
more general form of correlation intractability.

Formally, let SHSF = (Gen,Shift,Eval) be a SHSF family that represents functions of the form
Fsk : {0, 1}ν(λ) → Zµ(λ)

p and supports shifts for functions f ∈ C, where C is some class that contains
the all zero function ensemble. We then consider two hash functions Hplain,Hshift:

� Hplain uses msk as a hash key, and computes the function h(msk, x) = Fmsk(x).

� Hshift uses skZ as a hash key, where Z : {0, 1}ν → Zµp is an identically zero function. It
computes the function h(skZ , x) = FskZ (x).

Theorem 3.1. Let Rout be an efficiently decidable output relation. If SHSF is a shift-hiding
shiftable function family for C and Hplain is Rout-output intractable, then Hshift is (R, f)-
correlation intractable for any f ∈ C.

Moreover, if Hplain is NAE-Rout-output intractable, then Hshift is NAE-(R, f)-CI for any
f ∈ C.
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Proof. Suppose that a PPT adversary A breaks the (R, f)-correlation intractability ofHshift, which
means that A wins the following challenger-based security game with non-negligible probability:

1. The challenger samples msk← Gen(1λ).

2. The challenger samples sk = skZ ← Shift(msk, Z) and sends sk to A.

3. A(sk) outputs x = (x1, . . . , xt).

4. A wins if (i) the inputs xi are distinct, and (ii) for yi = Fsk(xi)− f(xi), the relation Rout(y)

holds.

Then, A also wins each of the following modified security games with non-negligible probability.

� Hybrid Hyb1: same as the honest security game, except that in step (2), we sample

skf ← Shift(msk, f)

This is indistinguishable from the original security game by the shift-hiding of SHSF.

� Hybrid Hyb2: same as Hyb1, except that in step (4), we change the win condition (ii) so that
A wins if for yi = Fmsk(xi), the relation Rout(y) holds.

This is indistinguishable from Hyb1 by the computational correctness of SHSF.

Finally, we show that A’s success in Hyb2 leads to an attack A′ on the Rout-output intractability
of Hplain. The attack works as follows:

1. The challenger samples msk← Gen(1λ) and sends msk to A′.

2. A′(msk) samples sk = skf ← Shift(msk, f).

3. A′ then calls A(skf ) and outputs x = (x1, . . . , x`).

4. By definition, A′ wins if (i) the xi are distinct, and (ii) for yi = Fmsk(xi), the relation Rout(y)

holds.

By construction, A′ above wins with the same probability that A wins in Hyb2, contradicting the
Rout-output intractability of Hplain.

The same argument as above applies to NAE-CI, with the condition (i) replaced by “the inputs
xi are not all equal.” This completes the proof of Theorem 3.1.

4 Construction of (Weighted) Sum-Resistant SHSF

We show the (weighted) sum-resistance of a variant of the Peikert-Shiehian construction of shift-
hiding shiftable functions [PS18]. We start by describing the ingredients that we use in the construc-
tion; the construction itself is described in Section 4.2. We include proof sketches of computational
correctness in Section 4.3 and shift-hiding in Section 4.4 for completeness, although these follow
the original [PS18] result. Finally, the proof of sum-resistance (which is new to this work) is in
Section 4.5. Appropriate parameter balancing must be done to ensure that the three security
reductions are simultaneously valid for a single set of parameters.
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4.1 The Ingredients

The Gadget Matrix. An important ingredient in many lattice-based constructions is the gadget
matrix G and the operator G−1 associated to it. Let

g = [1, 2, 4, . . . , 2dlog qe−1] ∈ Z1×dlog qe
q

The gadget matrix G = In⊗g is a block diagonal matrix with copies of g on the diagonal. In fact,
we will extend G to m columns for any m ≥ ndlog qe by appending zero columns.

An important property of G ∈ Zn×mq is that for every vector v ∈ Znq , there is a 0-1 vector
v′ ∈ {0, 1}m such that Gv′ = v (mod q). This leads us to define the operator G−1 : Znq → {0, 1}m
which has the property that

1. G−1(v) ∈ {0, 1}m for every vector v ∈ Znq ; and

2. G ·G−1(v) = v (mod q).

We will extend G−1 to matrices V by acting on each column of the matrix separately.
We caution the reader that G−1 refers to a (non-linear) operator, and has little to do with matrix
inverses.

Gadget Homomorphisms. The key idea in the SHSF construction is the notion of gadget
homomorphisms originating from [BGG+14]. For LWE matrices A1,A2 ∈ Zn×mq , define the sum
and product matrices

A+ = A1 + A2 and A× = −A1G
−1(A2) (1)

where G is the gadget matrix and G−1 is the bit decomposition operator defined above. The gadget
homomorphisms allow us to start from LWE encodings c1 ≈ s(A1 + x1G) and c2 ≈ s(A2 + x2G)

w.r.t. an LWE secret s ∈ Znq (where we suppress the LWE errors for clarity) and compute

c+ ≈ s(A+ + (x1 + x2)G) and c× ≈ s(A× + x1x2G) (2)

In particular, this is accomplished by setting

c+ = c1 + c2 ≈ s(A1 + A2 + (x1 + x2)G) = s(A+ + (x1 + x2)G)

and

c× = −c1G
−1(A2) + x1c2

≈ −s(A1 + x1G) ·G−1(A2) + s(A2 + x2G) · x1

= s(−A1G
−1(A2) + x1x2G)

= s(A× + x1x2G)

Crucially, this computation does not require the knowledge of either x1 or x2 to compute the
sum. It does require the knowledge of x1 (but not x2) to compute the product. This asymmetry will
prove invaluable to us down the line. We will ensure that the inputs xi as well as the intermediate
values in the computation are bits, in order to control the error growth.

More generally, we define the following two algorithms.
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� Gadget.MEval(g,A1, . . . ,A`), the matrix homomorphism, takes as input a function g : {0, 1}` →
{0, 1} and `matricesA1, . . . ,A` and outputs the matrixAg obtained by composing together
the addition and multiplication operations in Equation 1.

� Gadget.VEval(g, x, c1, . . . , c`), the vector homomorphism, takes as input a function g : {0, 1}` →
{0, 1}, an input x = x1x2 . . . x` and LWE encodings

c1 = s(A1 + x1G) + e1, . . . , c` = s(A` + x`G) + e`

of x w.r.t. A1, . . . ,A`, and outputs a vector cg obtained by composing together the addition
and multiplication operations in Equation 2.

Correctness tells us that if c1, . . . , c` have poly(n)-bounded error, then

cg ≈ s(Ag + g(x)G) (3)

where the difference is an LWE error whose magnitude is O((n log q)O(dg)) where λ is a security
parameter and dg is the depth of the circuit g. Looking ahead, we make two important observations
on these algorithms:

1. First, if the function g is of a special form, namely g(x1, x2) = 〈x1, f(x2)〉 for some x = x1||x2,
then Gadget.VEval does not require the knowledge of x1, rather only x2. Furthermore, while
we required all the numbers in a computation to be bits so far, a terminal inner product
(i.e. an inner product at the end of a computation) can support x1 being a vector consisting
of large numbers. These observations are due to [AFV11,GVW15] where they were used to
construct a predicate encryption scheme.

2. Secondly, if the first coordinate of s is 1 (which we can set without loss of security) then we
have

cg ≈ sag + g(x) (4)

where cg is the first coordinate of cg and ag is the first column of Ag. This is because the
first column of G is the unit vector with 1 in the first coordinate and 0 everywhere else.

FHE with Almost Linear Decryption. We require the existence of a (secret-key) FHE scheme
where the secret key fsk is a vector s ∈ Zn̂q , ciphertexts fct of messages m ∈ Zp are vectors c ∈ Zn̂q
and decryption proceeds by first doing a linear operation which gives

〈fsk, fct〉 = m ·
⌊
q

p

⌉
+ e (mod q) (5)

where e is a small error. In particular, we will ask that if initial ciphertexts have polynomially
bounded error, then ||e|| should be bounded by (n̂ log q)O(d), where d is the depth of the homo-
morphic computation. Prior LWE-based FHE schemes, as constructed in [BV11,BGV12,GSW13,
BV14,AP14], have this form (based on different variants of LWE). We will let FHE.Enc denote the
encryption algorithm and FHE.Eval denote the evaluation algorithm.
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4.2 The Shift-Hiding Shiftable Function

Let the class of functions C consist of functions f : {0, 1}ν → Zµp computable by circuits of size
at most s = s(λ). We require that p = p(λ) is a sufficiently large function of λ; for simplicity, we
will choose p so that p = 2Θ(λ) (further specified later). Since we allow µ(λ), ν(λ) to be arbitrary
polynomial functions, every function family with polynomially related input and output length can
be expressed in such a way.

� Gen(1λ): picks LWE parameters n = n(λ), m = m(λ) and q = q(λ), where q = 2(dλ)O(1/ε)
is a

sufficiently large product of primes to be specified later. We pick the LWE error distribution
to be polynomially bounded, and set n ≥ (dλ)O(1/ε2) so that the LWE assumption follows
from worst-case hardness of GapSVP with subexponential approximation factors. Generate
the public parameters

pp = (A1, . . . ,A`,u)← (Zn×mq )` × Z1×m
q

for a certain ` = `(s, λ) (also specified later).

Choose a uniformly random vector s← Znq whose first coordinate s[1] = 1. Let msk = s.

� Eval(msk, x): Let FHE be a (leveled) fully homomorphic encryption scheme with almost linear
decryption (as defined above in Equation 5) with plaintext space Zp. Construct the functions
g

(i)
x that, on input a pair (fsk, fct), output10

g(i)
x (fsk, fct) =

〈
fsk,FHE.Eval(fct,U (i)

x )

〉
(mod q)

where U (i)
x is a universal circuit that takes as input the description of a circuit f and outputs

the ith Zp-block of f(x). The parameter ` = poly(ν, µ, λ) is set to be large enough so that the
functions g(i)

x have description length at most `.

Define
A(i)
x = Gadget.MEval(g(i)

x ,A1, . . . ,A`) ∈ Zn×mq ,

let a(i)
x denote the first column of A(i)

x and let

Ax := [a(1)
x ||a(2)

x || . . . ||a(µ)
x ] ∈ Zn×µq

denote the concatenation of a(i)
x . The output is

bsAx + uG−1(Ax)ep :=

⌊
p

q
· (sAx + uG−1(Ax))

⌉
∈ Z1×µ

p

� Shift(msk, f): Choose an FHE secret key fsk ∈ Zn̂q , encrypt the description of f into an FHE
ciphertext fct, let φ := fct||fsk, and let

Af := [A1 + φ1G|| . . . ||A` + φ`G]

10The function g
(i)
x does not actually have a binary output, but as was done in [BV15,GVW15], the [BGG+14]

homomorphism can be extended to this function.
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Output as the shift key
skf := (fct, sAf + e)

where e is drawn from the LWE noise distribution.

Note that ` is the bit-length of fsk||fct and is poly(s, λ).

� SEval(skf , x): Let the circuits g(i)
x be as in the definition of Eval.

c(i)
x = Gadget.VEval(g(i)

x , fct, c1, . . . , c`) ∈ Znq

where ci = s[Ai + φiG]. Note that crucially, Gadget.VEval does not require fsk as input
because, by observation (1) above, g(i)

x only linearly depends on it. Let c(i)
x denote the first

element of c(i)
x and let cx be the concatenation of all c(i)

x .

Output
bcx + uG−1(Ax)ep

as the shifted evaluation.

4.3 Proof of Computational Correctness

Computational correctness follows from a similar argument in [PS18], although with slightly dif-
ferent parameter choices. We sketch it here for completeness.

Basic Correctness. We first sketch correctness of SEval for any fixed x. By the correctness of
the gadget homomorphisms (equation 4), we know that

c(i)
x ≈ sa(i)

x + g(i)
x (fsk, fct)

= sa(i)
x + 〈fsk,FHE.Eval(fct,U (i)

x )〉

≈ sa(i)
x + U (i)

x (f) ·
⌊
q

p

⌉
= sa(i)

x + f (i)(x) ·
⌊
q

p

⌉
(6)

where the second equation is by the definition of g(i)
x , the third (approximate) equation is by the

correctness of FHE decryption (equation 5), and the fourth equation is by the definition of the
universal circuit U . The approximation error is equal to the gadget homomorphic evaluation error
plus the FHE decryption error, which is

O((n log q)O(d′) + (n̂ log q)O(d)) = λO( 1
ε4
·d log(dλ))

where d is the depth of the circuit U (i)
x and d′ = O(d · log(n log q)) is the depth of the circuit g(i)

x

that homomorphically evaluates U (i)
x and decrypts. Since we chose q = 2λ

Θ(1/ε)
, this error is very

small relative to q.
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Now, as long as c(i)
x does not fall too close to the boundaries of multiples of q/p, we have

SEval(skf ,x) = bcx + uG−1(Ax)ep
= bsAx + uG−1(Ax)ep + f(x) = Eval(msk, x) + f(x) (mod p) (7)

It turns out that for any fixed x, the boundary event happens with a negligible probability. More-
over, adapting arguments from [BV15,PS18], we will now show that it is computationally hard to
find an x for which correctness (that is, equation 7) fails. (This is stronger than basic correctness
in that it holds for any adaptively chosen x, and weaker because the guarantee is computational;
adaptive statistical correctness does not hold for this construction.)

Computational Correctness. By the calculation in equation 6, we know that for each i ∈ [µ],

c(i)
x = sa(i)

x + f (i)(x) ·
⌊
q

p

⌉
+ ei

where |ei| ≤ B := λO( 1
ε4
d log(dλ)).

Assume that there is an adversary that, given the shift key skf ← Shift(msk, f) for some f of
his choice, produces an x such that

SEval(skf , x) 6= Eval(msk, x)

meaning that they differ in some coordinate, say i.
Then, by the expressions for SEval and Eval, we have

SEval(skf , x)|i =

⌊
p

q
c(i)
x

⌉
=

⌊
p

q
· (sa(i)

x + f (i)(x) ·
⌊
q

p

⌉
+ ei)

⌉
=

⌊
p

q
· (sa(i)

x + f (i)(x) · q
p

+ e′i)

⌉
6=
⌊
p

q
· (sa(i)

x + f (i)(x) · q
p

)

⌉
=

⌊
p

q
· sa(i)

x

⌉
+ f (i)(x) = Eval(msk, x)|i

where ε′i = εi + f (i)(x)
(⌊

q
p

⌉
− q

p

)
∈ [−(B + p), (B + p)]. This can only happen when

p

q
c(i)
x ∈ Z +

1

2
+
p

q
· [−(B + p), B + p],

or, equivalently,

c(i)
x ∈

q

p
(Z +

1

2
) + [−(B + 1/2), B + 1/2].

Now, observe that
c(i)
x = [c1|| . . . ||c`] · h(i)

for some vector h(i) of low norm B = λO( 1
ε4
d log(dλ))). Since ci are pseudorandom, this gives us

a solution to the 1D-SIS`,p,q,B problem. For this choice of B, Fact 2.16 tells us that provided
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q = p
∏n′

i=1 pi such that each pi ≥ poly(B), this 1D-SIS variant is as hard as SIVP/GapSVP on
n′-dimensional lattices with an approximation factor of poly(B). Given all of the parameter con-
straints, we can set n′ ≥ (dλ)O(1/ε) so that 2(n′)ε ≥ poly(B), allowing us to rely on the claimed
hardness assumption.

4.4 Proof of Shift-Hiding

We wish to show that for any two functions f0, f1 ∈ C,

(Shift(msk, f0), pp) ≈c (Shift(msk, f1), pp)

where (pp,msk) ← Setup(1λ). This also follows from [PS18] (up to minor definition/notation
changes), but we sketch a proof for completeness. Shift-hiding follows by the following sequence of
hybrids.

Hybrid 0. This is the distribution generated by picking (pp,msk)← Setup(1λ) and outputting pp

together with
skf0 ← Shift(msk, f0)

That is,
skf0 := (fct, sAf0 + e)

where fct is an FHE encryption of f0 under an FHE secret key fsk, and

Af0 = [A1 + φ1G|| . . . ||A` + φ`G]

where φ = fsk||fct and the matrices Ai live in the public parameters.

Hybrid 1. Generate fct = FHE.Enc(fsk, f0) as above, and let φ = fsk||fct. Choose

Af0 = [A′1|| . . . ||A′`]

to be a truly random LWE matrix of the appropriate dimensions, and program Ai in the public
parameters to be A′i − φiG. Hybrid 1 is distributed identically to that in Hybrid 0.

Hybrid 2. Replace sAf0 +e in Hybrid 1 with a uniformly random vector. This is computationally
indistinguishable from Hybrid 1 by an application of LWE with respect to the uniformly random
matrix Af0 .

Hybrid 3. Replace the public parameters by uniformly random matrices Ai. This hybrid is
distributed identically to Hybrid 2. Note that the distribution in this hybrid is independent of the
FHE secret key fsk.

Hybrid 4. Replace fct in Hybrid 3 with an encryption of f1 instead of f0. This is computationally
indistinguishable from Hybrid 3 by an application of FHE semantic security.

The remaining hybrids backtrack through hybrids 2 back to 0 using f1 instead of f0.

Hybrid 5–7. This is identical to Hybrid 2–0, except that fct is an encryption of f1.
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Putting the hybrid argument together, we have that given the public parameters pp, the shift keys
for f0 and f1 are computationally indistinguishable. Indistinguishability relies on LWE for matrices
in Zn×mq as well as the semantic security of an FHE scheme (with almost linear decryption) over
Zq with messages in Zp, which can both be arranged to follow from the hardness of GapSVP with
subexponential approximation factors.

4.5 Proof of Sum-Resistance

Assume that an adversaryA, givenmsk and pp, comes up with weights w1, . . . , wt ∈ {−1, 0, 1}t\{0t}
and inputs x1, . . . , xt such that

t∑
i=1

wi · Eval(msk, xi) = 0 (mod p)

and either the xi are all distinct, or the xi are not all equal and
∑

iwi 6= 0. The equation above
says that

t∑
i=1

wi · bsAxi + uG−1(Axi)ep = 0 (mod p)

Rewriting this, we have

t∑
i=1

wi · b(sG + u)G−1(Axi)ep =

t∑
i=1

wi ·
⌊
p

q
· (sG + u)G−1(Axi)

⌉
= 0 (mod p)

Writing v for sG + u, and isolating the rounding errors εi ∈
(

1
qZ
)µ

, we have

p

q
· v ·

t∑
i=1

wi ·G−1(Axi) =

t∑
i=1

wiεi (mod p)

Note that
∣∣∣∣∑t

i=1wiεi
∣∣∣∣
∞ ≤ t since ||εi||∞ ≤ 1 for all i. Multiplying both sides by q/p,

v ·
t∑
i=1

wi ·G−1(Axi) =
q

p
·

t∑
i=1

wiεi := ε (mod q)

where ε ∈ Zµ and ||ε||∞ ≤ qt/p. Now, we have two possibilities:

Case 1.
∑t

i=1wi ·G−1(Axi) 6= 0 (mod q). In this case, the matrix Z =
∑t

i=1wi ·G−1(Axi) —
or any nonzero column z of Z — constitutes an approximate Zq-SIS (Definition 2.12) solution on
instance v, with input norm bound ||z||∞ ≤ t and output error bound E = qt

p .
By Claim 2.14, this variant of Zq-SIS is as hard as approximate Zq̃-SIS with the following

parameters:

� Modulus q̃ = Θ̃(
√
p)

� Input norm bound β = t
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� Output error bound η = q̃t
p + 2mt = Õ( t√

p) + 2mt ≤ 2mt+O(1) (since p = 2Θ(λ)).

By Fact 2.13, setting q̃ to be the product of the first λ̃ ≥ λ1/3 primes, this problem is at least as
hard as SIVP/GapSVP over lattices of dimension λ1/3 with approximation ratio poly(λ,m, t).

Case 2.
∑t

i=1wi ·G−1(Axi) = 0 (mod q). In this case, we know that

G ·
t∑
i=1

wi ·G−1(Axi) =
t∑
i=1

wiAxi = 0 (mod q)

We now show how to use this to break SIS.
Let h = h1 . . . h` be the description of a random function chosen from a t-wise independent hash

family with range Zµq . Moreover, let x1, . . . xt denote the inputs returned by any fixed execution of
A. Then, let

y =

t∑
i=1

wih(xi) (mod q).

We note that with high probability over the choice of h, we have y 6= 0. This follows directly
from the t-wise independence of h: if the xi are distinct, then indeed

∑t
i=1wih(xi) is uniformly

random (since each h(xi) is uniform and independent of the other h(xj)). Similarly, if the xi are
not-all-equal and

∑
iwi 6= 0, then there exists a term

∑
i∈S wih(xi) corresponding to one “super-

variable” where
∑

i∈S wi 6= 0, again implying that the overall sum is uniformly random. Therefore,
we conclude that with non-negligible probability over the randomness of A,msk, h, A outputs x

such that
∑t

i=1wiG
−1(Axi) = 0 and y 6= 0.

Now, imagine the experiment where Aj is picked as ARj + hjG. Here,

A =

[
a

A

]
whereA is an SIS challenge matrix and a is uniformly random. This is statistically indistinguishable
from above, so the same claimed property holds. Now,

A(i)
x = Gadget.MEval(U (i)

x ,A1, . . . ,A`) = ARx,i + h(x)|iG

and
a(i)
x = Arx,i + h(x)|iu1

where u1 is the first unit vector. (Technically, A(i)
x is computed by doing a homomorphic evaluation

of h and then decrypting. However, this complication does not make a significant difference to our
argument below.)
We know that for each i ∈ [µ],

t∑
j=1

wja
(i)
xj = 0 (mod q).
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Defining Rxj =
[
rxj ,1 . . . rxj ,µ

]
, we conclude that

A ·
t∑

j=1

wjRxj︸ ︷︷ ︸
:=R

+


t∑

j=1

wjh1(xj)︸ ︷︷ ︸
=y1

u1|| . . . ||
t∑

j=1

wjhµ(xj)︸ ︷︷ ︸
=yµ

u1

 = 0 (mod q)

Whenever y 6= 0 (mod q), it follows that R is not zero. Now, we have AR = 0 (mod q) (since
u1 = 0) and R 6= 0 giving us a SIS solution w.r.t. A. This finishes the proof of weighted t-sum-
resistance.

4.6 Putting it Together: Weighted Sum-Resistant SHSFs

Combining the results of Section 4.4, Section 4.3, and Section 4.5, we obtain the following theorem.

Theorem 4.1. Assume that there is some ε > 0 for which it is hard to approximate short
vector problems in worst case n-dimensional lattices to within 2n

ε
factor. Let SHSF =

(Gen,Shift,Eval) be the SHSF family constructed above. Then, the hash function family Hplain

that uses (pp,msk)← Gen(1λ) as a hash key, and computes the function

h((pp,msk), x) = Eval(pp,msk, x)

is t-weighted-sum-resistant for every t = poly(λ).

Combining Theorem 4.1 and Theorem 3.1 (the CI lifting theorem), we get a hash family that
is CI for shifted (weighted) sum relations.

Theorem 4.2. Under the same assumption as in Theorem 4.1, there is a hash function family
H that is (Rout, f)-correlation intractable (as in Definition 2.7), where Rout is the weighted
sum relation as in Definition 2.8 and f is any efficiently computable function. That is, H is
correlation-intractable for shifted (weighted) sum relations.

5 Output-Intractable SHSFs from iO

In this section, we present constructions of Output-Intractable SHSFs from iO (Theorem 1.6 and
Theorem 1.5). For simplicity, we set the shift modulus p = 2 for SHSFs in the remainder of this
section.

5.1 IO-Related Preliminaries

5.1.1 Indistinguishability Obfuscation

An obfuscator for all circuits is a PPT algorithm O such that for every circuit C, O(C) is with
probability 1 a circuit C̃ with the same functionality as C.
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Definition 5.1 (Indistinguishability Obfuscation [BGI+01]). O is a (s, δ)-secure indistinguisha-
bility obfuscator (iO) if for all pairs of functionally equivalent circuits C0 and C1 of size
|C0| = |C1| = λ, and all circuits A of size s(λ), it holds that

Pr[A(O(C0)) = 1]− Pr[A(O(C1)) = 1] ≤ O(δ(λ)).

5.1.2 Puncturable PRFs

Definition 5.2 (Puncturable PRF [BW13,BGI14,KPTZ13,SW14]). A puncturable PRF family
is a family of functions

F =
{
Fλ,s : {0, 1}ν(λ) → {0, 1}µ(λ)

}
λ∈N,s∈{0,1}`(λ)

with associated (deterministic) polynomial-time algorithms (F .Eval,F .Puncture,F .PuncEval)
satisfying

� For all x ∈ {0, 1}ν(λ) and all s ∈ {0, 1}`(λ), F .Eval(s, x) = Fλ,s(x).

� For all distinct x, x′ ∈ {0, 1}ν(λ) and all s ∈ {0, 1}`(λ),

F .PuncEval(F .Puncture(s, x), x′) = F .Eval(s, x′)

For ease of notation, we write Fs(x) and F .Eval(s, x) interchangeably, and we write s{x} to
denote F .Puncture(s, x).
F is said to be (s, δ)-secure if for every {x(λ) ∈ {0, 1}ν(λ)}λ∈N, the following two distribution

ensembles (indexed by λ) are δ(λ)-indistinguishable to circuits of size s(λ):

(S{x(λ)}, FS(x(λ))) where S ← {0, 1}`(λ)

and
(S{x(λ)}, U) where S ← {0, 1}`(λ), U ← {0, 1}µ(λ).

Theorem 5.3 ( [GGM84,KPTZ13,BW13,BGI14,SW14]). If {polynomially secure, subexponen-
tially secure} one-way functions exist, then for all functions µ : N→ N (with 1µ(ν) polynomial-
time computable from 1ν), and all δ : N → [0, 1] with δ(ν) ≥ 2−poly(ν), there are polynomials
`(λ), ν(λ) and a {polynomially secure, ( 1

δ(ν(λ)) , δ(ν(λ)))-secure} puncturable PRF family

Fµ =
{
Fλ,s : {0, 1}ν(λ) → {0, 1}µ(ν(λ))}λ∈N,s∈{0,1}`(λ)

}
.

5.1.3 Lossy Functions

Definition 5.4 (Lossy Functions [PW08]). A lossy function family LF = (LF.Gen, LF.Eval) consists
of two PPT algorithms:

� LF.Gen(1λ, injective/lossy) outputs an evaluation key ek either in “injective mode” or
“lossy mode.”
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� LF.Eval(ek, x) takes an evaluation key ek as well as an input x ∈ {0, 1}ν(λ). It returns a
deterministic output y ∈ {0, 1}N(λ).

We require that LF satisfies three properties:

� Injectivity: With probability 1−negl(λ) over the randomness of ek← LF.Gen(1λ, injective),
the function LF.Eval(ek, ·) is injective.

� Lossiness (with parameter `(λ)): With probability 1 − negl(λ) over the randomness of
ek← LF.Gen(1λ, lossy), the range of the function LF.Eval(ek, ·) has size at most 2`(λ).

� Key Indistinguishability: randomly sampled injective and lossy keys are computation-
ally indistinguishable.

5.2 Output-Intractable SHSFs from iO + Output-Intractable Puncturable PRFs

In this section, we note that the natural construction of SHSFs from (subexponential) iO and
puncturable PRFs (following the [BLW17] construction of private constrained PRFs from iO) also
yields output-intractable SHSFs from iO along with output-intractable puncturable PRFs. This
fact will be used in all of our iO-based constructions.

Construction 5.5 (SHSF from IO). Let PRF = {Fs : {0, 1}ν(λ) → {0, 1}µ(λ)} denote a (punc-
turable) PRF family and let O denote an indistinguishability obfuscator. Then, PRF can be
augmented with the algorithm Shift, defined as follows:

Shift(s, f) = O
(
x 7→ PRFs(x) + f(x)

)
.

Moreover, a shifted key skf ← Shift(s, f) can be evaluated on an input x simply by interpreting
skf as a program and evaluating skf (x).

Lemma 5.6. Suppose that PRF is a 2−ν(λ) · negl(λ)-secure puncturable PRF (Definition 5.2),
and O is a 2−ν(λ) · negl(λ) secure indistinguishability obfuscator (Definition 5.1).

Then, (PRF, Shift) is a SHSF for bounded-size shift functions. Moreover, if the hash family
Hplain(msk, x) = PRFmsk(x) is output-intractable (or NAE-output-intractable) for a relation
Rout, then the same is true for SHSF.

Proof. For the first claim, it suffices to show that (PRF,Shift) satisfies correctness and shift-hiding.
Correctness follows immediately from the correctness of O.

To see that (PRF,Shift) is shift-hiding – namely, that skf ≈c skg for any pair of (bounded-size)
circuits (f, g), we closely follows the CHCPRF security proof in [BLW17]. Namely, we appeal to a
hybrid argument with 2ν + 2 hybrid distributions on keys sk, defined as follows:

� Hyb−1: sk = skf ← Shift(s, f) = O (x 7→ PRFs(x) + f(x)).

� For every 0 ≤ x∗ ≤ 2ν − 1 (interpreting x∗ as both an integer and a string Hybx∗ = sk ←
O (x 7→ PRFs(x) + g(x) if x < x∗, x 7→ PRFs(x) + f(x) if x ≥ x∗)
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� Hyb2ν : sk = skg ← Shift(s, g) = O (x 7→ PRFs(x) + g(x)).

We note that Hyb−1 ≈c,2−νnegl(λ) Hyb0 and Hyb2ν−1 ≈c,2−νnegl(λ) Hyb2ν by the 2−ν · negl(λ)-
security of O. Additionally, we note that Hybx∗ ≈c,O(2−ν ·negl(λ)) Hybx∗+1 for every 0 ≤ x∗ ≤ 2ν − 2

by a standard puncturing argument. This relies on the 2−ν ·negl(λ)-security of both the obfuscator
and the puncturable PRF. This completes the proof of shift-hiding.

Finally, since the honest evaluation of the SHSF in Construction 5.5 is identical to a punc-
turable PRF evaluation (with the same secret key), we note that the SHSF SHSF is (NAE) output-
intractable for a relation Rout if and only if PRF is (NAE) output-intractable for the same relation
Rout. Thus, by Theorem 3.1, in order to obtain correlation-intractable hash functions based on IO,
we have reduced the problem to constructing output-intractable 2−ν-secure puncturable PRFs.

We now present two constructions of 2−ν-secure puncturable PRFs, based on different assump-
tions.

5.3 Construction 1: Postcomposition with an Output-Intractable Hash

Construction 5.7. Let PRF denote a puncturable PRF family mapping {0, 1}ν(λ) → {0, 1}N(λ).
Let H denote an Rout-output intractable hash family mapping {0, 1}N(λ) → {0, 1}µ(λ). Then, we
define the PRF family PRFH = H ◦ PRF as follows:

� A secret key for PRFH is a pair (k, sk) with k ← H.Gen(1λ) and sk← PRF.Gen(1λ).

� Evaluation is defined to be

PRFH(k, sk, x) = h(k,PRFsk(x)).

Lemma 5.8. Suppose that PRF is a 2−ν ·negl(λ)-secure puncturable PRF family that is injective
with high probability, H is Rout-output intractable (or NAE-Rout-output intractable), and H
has a nearly uniform output distribution, meaning that{

k ← H.Gen(1λ), x← {0, 1}N(λ) : (k, h(x))
}

≈c,2−ν ·negl(λ)

{
k ← H.Gen(1λ), y ← {0, 1}µ(λ) : (k, y)

}
.

Then, PRFH is a 2−ν · negl(λ)-secure puncturable PRF family that is also Rout-output in-
tractable (or NAE-Rout-output intractable).

Proof. We first show output intractability. If an adversary A(k, sk) finds distinct (respectively,
not-all-equal) inputs (x1, . . . , xt) such that (hk(PRFsk(x1), . . . , hk(PRFsk(xt))) ∈ Rout with non-
negligible probability, then we claim that this violates the Rout-output intractability of H. This
holds because with all but negligible probability, PRFsk is an injective function, in which case the
inputs PRFsk(x1), . . . ,PRFsk(xt) to hk are distinct (respectively, not-all-equal) as long as x1, . . . , xt
are distinct (respectively, not-all-equal). This gives an attack on the Rout-output intractability
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of H: given a key k, an adversary A′ can sample sk, call (x1, . . . , xt) ← A(k, sk), and output
(PRFsk(x1), . . . ,PRFsk(xt)).

Next, we show that PRFH is a 2−νnegl(λ)-secure puncturable PRF family. To do so, we define
a puncturing algorithm:

PRFH.Puncture(k, sk, x
∗) = (k, sk{x∗}).

One can then verify that for x 6= x∗

PuncEval((k, sk){x∗}, x) = PRFH(k, sk, x).

Finally, 2−ν · negl(λ)-pseudorandomness at punctured points follows from the analogous property
for PRF along with the fact that H has a nearly uniform output distribution.

5.4 Construction 2: Precomposition with a Lossy Function

Construction 5.9. Let PRF denote a puncturable PRF family mapping {0, 1}N(λ) → {0, 1}µ(λ).
Let LF = (LF.Gen, LF.Eval) denote a lossy function family mapping {0, 1}ν(λ) → {0, 1}N(λ) and
lossiness parameter `(λ). Then, we define the PRF family PRFLF = PRF ◦ LF as follows:

� A secret key for PRFLF is a pair (sk, ek) with ek← LF.Gen(1λ, injective) and sk← PRF.Gen(1λ).

� Evaluation is defined to be

PRFLF(sk, ek, x) = PRF(sk, LF.Eval(ek, x)).

Lemma 5.10. Suppose that PRF is a
(
2N(λ)+`(λ)t(λ), 2−ν(λ) · negl(λ)

)
-secure puncturable PRF

family, and suppose that LF is a lossy function family with lossiness parameter τ(λ).
Then, for any relation Rout with sparsity at most 2−t(λ)`(λ) · negl(λ), PRFLF is a 2−ν · negl(λ)-
secure puncturable PRF family that is also Rout-output intractable.

Moreover, if Rout is also sparse whenever the inputs x1, . . . , xt are not-all-equal, then the
PRF family satisfies NAE-Rout-output intractability.

Proof. We first show puncturing-pseudorandomness. To do so, we define a puncturing algorithm

PRFH.Puncture(sk, ek, x
∗) = (k, sk{LF.Eval(x∗)}).

Punctured evaluation correctness (with all but negligible probability over the sampling of
(sk, ek)) follows from the fact that ek is sampled in injective mode. Pseudorandomness follows
directly from the pseudorandomness of PRF.

We next show output intractability. If an adversary A(sk, ek) finds distinct (respectively, not-
all-equal) inputs (x1, . . . , xt) such that

(PRFsk(LF.Eval(ek, x1)), . . . ,PRFsk(LF.Eval(ek, xt))) ∈ Rout
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with non-negligible probability ε, then since ek is sampled in injective mode, the same claim holds
where (LF.Eval(ek, x1), . . . , LF.Eval(ek, xt)) are distinct (respectively, not-all-equal).

Then, by the security of LF, we also know that when ek ← LF.Gen(1λ, lossy) is sampled from
the lossy distribution, we have that

(x1, . . . , xt)← A(sk, ek) : (LF.Eval(ek, x1), . . . , LF.Eval(ek, xt)) are distinct

and (PRFLF(sk, ek, x1), . . . ,PRFLF(sk, ek, xt)) ∈ Rout ≥ ε− negl(λ).

Finally, we claim that in reality, with high probability over (sk, ek), there do not exist such
input tuples. This follows from the pseudorandomness of PRF: for any fixed set S of size 2`(λ), the
probability that a random function F has an t-tuple of distinct (respectively, not-all-equal) inputs
z1, . . . , zt from S such that (F (z1), . . . , F (zt)) ∈ Rout is at most |S|t ·β if Rout has sparsity β, which
is negligible under our hypotheses. Picking S = Im(LF(ek, ·)), we conclude that the same holds for
the PRF family PRFsk, as this condition can be tested in time 2N(λ)+`(λ)t(λ) by enumeration. Thus,
we obtain a contradiction, completing the proof of Lemma 5.10.

5.5 Putting it Together

Combining Theorem 3.1 and Lemma 5.6 with Lemma 5.8 and Lemma 5.10, respectively, we obtain
our final constructions of correlation intractable hash families based on obfuscation. We restate
the results (Theorem 1.6 and Theorem 1.5) from the introduction for completeness.

Theorem 5.11 (Theorem 1.6, restated). Assume the existence of

1. Subexponentially secure indistinguishability obfuscation,

2. Subexponentially secure one-way functions, and

3. A hash family H such that (i) H is Rout-output intractable, and (ii) for a random input
X, hk(X) is 2−ν · negl(λ)-indistinguishable from uniform (even given k).

Then, there exists a hash family that is CI for shifted Rout-relations.

This follows by combining Theorem 3.1, Lemma 5.6, and Lemma 5.8.

Theorem 5.12 (Theorem 1.5, restated). Assume the existence of

1. Subexponential IO,

2. Subexponential OWFs, and

3. Lossy functions with input domain {0, 1}ν with a range of size ≤ 2` in lossy mode.

Then, there exists a hash family H that is CI for all (efficiently decidable) shifted t-ary
output relations with sparsity at most 2−t`.

This follows by combining Theorem 3.1, Lemma 5.6, and Lemma 5.10.

32



Acknowledgements

We thank an anonymous reviewer for pointing out that the [PS19] hash function can likely also be
shown to satisfy multi-input CI for shifted sum relations.

References

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Dong Hoon Lee
and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 21–40.
Springer, Heidelberg, December 2011.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
28th ACM STOC, pages 99–108. ACM Press, May 1996.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616
of LNCS, pages 297–314. Springer, Heidelberg, August 2014.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation
and functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 191–
209. IEEE Computer Society Press, October 2015.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for io: Circular-secure lwe suffices. IACR Cryptology ePrint
Archive, 2020:1024, 2020.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg,
August 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
501–519. Springer, Heidelberg, March 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages
309–325. ACM, January 2012.

33



[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs from
standard lattice assumptions. In Jean-Sébastien Coron and Jesper Buus Nielsen, edi-
tors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 415–445. Springer,
Heidelberg, April / May 2017.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor
hash via correlation intractability for approximable relations. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 738–767. Springer, Heidelberg, August 2020.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-box zero
knowledge. In 44th FOCS, pages 384–393. IEEE Computer Society Press, October
2003.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions
privately. In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages
494–524. Springer, Heidelberg, March 2017.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos -
trapdoor permutations from indistinguishability obfuscation. In Eyal Kushilevitz and
Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 474–502.
Springer, Heidelberg, January 2016.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer,
Heidelberg, August 1994.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE
Computer Society Press, October 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
Moni Naor, editor, ITCS 2014, pages 1–12. ACM, January 2014.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015
of LNCS, pages 1–30. Springer, Heidelberg, March 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 280–300. Springer, Heidelberg, December 2013.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.

34



[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability of
obfuscated pseudorandom functions. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 389–415. Springer, Heidelberg,
January 2016.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and
correlation intractability from strong KDM-secure encryption. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 91–122. Springer, Heidelberg, April / May 2018.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In 30th ACM STOC, pages 209–218. ACM Press,
May 1998.

[CK16] Aloni Cohen and Saleet Klein. The GGM function family is a weakly one-way family of
functions. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume
9985 of LNCS, pages 84–107. Springer, Heidelberg, October / November 2016.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilistic
hash functions (preliminary version). In 30th ACM STOC, pages 131–140. ACM Press,
May 1998.

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions.
In 40th FOCS, pages 523–534. IEEE Computer Society Press, October 1999.

[DVW20] Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. Extracting randomness
from extractor-dependent sources. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 313–342. Springer, Heidelberg,
May 2020.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions (extended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society
Press, October 1984.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
Proceedings of STOC 2021, 2021. https://eprint.iacr.org/2020/1010.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations. Jour-
nal of Cryptology, 26(3):484–512, July 2013.

35

https://eprint.iacr.org/2020/1010


[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Heidelberg, August 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg,
August 2015.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In Mikkel Thorup,
editor, 59th FOCS, pages 850–858. IEEE Computer Society Press, October 2018.

[HU19] Dennis Hofheinz and Bogdan Ursu. Dual-mode NIZKs from obfuscation. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of
LNCS, pages 311–341. Springer, Heidelberg, December 2019.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. Proceedings of STOC 2021, 2021. https://eprint.iacr.org/
2020/1003.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press,
November 2013.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 224–251. Springer, Heidelberg,
August 2017.

[LV20] Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated squaring with
applications to PPAD-hardness and VDFs. In Daniele Micciancio and Thomas Ris-
tenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 632–651.
Springer, Heidelberg, August 2020.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,
Manubot, 2008. https://git.dhimmel.com/bitcoin-whitepaper/.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theo-
retical Computer Science, 10(4):283–424, 2016.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the
LWE way. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume
10770 of LNCS, pages 675–701. Springer, Heidelberg, March 2018.

36

https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://git.dhimmel.com/bitcoin-whitepaper/


[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 89–114. Springer, Heidelberg,
August 2019.

[PS20] Chris Peikert and Sina Shiehian. Constraining and watermarking PRFs from milder
assumptions. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 431–461. Springer,
Heidelberg, May 2020.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196.
ACM Press, May 2008.

[Reg04] Oded Regev. Lattices in computer science - average case hardness, 2004. Lecture Notes
for Class (scribe: Elad Verbin). https://cims.nyu.edu/~regev/teaching/lattices_
fall_2004/ln/averagecase.pdf.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In
Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III,
volume 12698 of LNCS, pages 127–156. Springer, Heidelberg, October 2021.

[Zha16] Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–508. Springer, Heidelberg,
August 2016.

37

https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf

	Introduction
	Our Results and Techniques
	Applications: Multi-Input CI from LWE and CI from iO
	Additional Related Work Discussion

	Preliminaries
	Hash Functions and Correlation Intractability
	Shift-Hiding Shiftable Functions
	Learning with Errors and (One-Dimensional) Short Integer Solution

	Correlation Intractability from Shift-Hiding Shiftable Functions
	Construction of (Weighted) Sum-Resistant SHSF
	The Ingredients
	The Shift-Hiding Shiftable Function
	Proof of Computational Correctness
	Proof of Shift-Hiding
	Proof of Sum-Resistance
	Putting it Together: Weighted Sum-Resistant SHSFs

	Output-Intractable SHSFs from iO
	IO-Related Preliminaries
	Output-Intractable SHSFs from iO + Output-Intractable Puncturable PRFs
	Construction 1: Postcomposition with an Output-Intractable Hash
	Construction 2: Precomposition with a Lossy Function
	Putting it Together


