Cryptology ePrint Archive: Report 2019/106

Identity-Based Higncryption

Hongbing Wang and Yunlei Zhao

Abstract: Identity-based cryptography (IBC) is fundamental to security and privacy protection. Identity-based authenticated encryption (i.e., signcryption) is an important IBC primitive, which has numerous and promising applications. After two decades of research on signcryption,recently a new cryptographic primitive, named higncryption, was proposed. Higncryption can be viewed as privacy-enhanced signcryption, which integrates public key encryption, entity authentication, and identity concealment (which is not achieved in signcryption) into a monolithic primitive. Here, briefly speaking, identity concealment means that the transcript of protocol runs should not leak participants' identity information.

In this work, we propose the first identity-based higncryption (IBHigncryption). The most impressive feature of IBHigncryption, among others, is its simplicity and efficiency. The proposed IBHigncryption scheme is essentially as efficient as the fundamental CCA-secure Boneh-Franklin IBE scheme [18], while offering entity authentication and identity concealment simultaneously. Compared to the identity-based signcryption scheme [11], which is adopted in the IEEE P1363.3 standard, our IBHigncryption scheme is much simpler, and has significant efficiency advantage in total. Besides, our IBHigncryption enjoys forward ID-privacy, receiver deniability and x-security simultaneously. In addition, the proposed IBHigncryption has a much simpler setup stage with smaller public parameters, which in particular does not have the traditional master public key.

Higncryption is itself one-pass identity-concealed authenticated key exchange without forward security for the receiver. Finally, by applying the transformation from higncryption to identity-concealed authenticated key exchange (CAKE), we get three-pass identity-based CAKE (IB-CAKE) with explicit mutual authentication and strong security (in particular, perfect forward security for both players). Specifically, the IB-CAKE protocol involves the composition of two runs of IBHigncryption, and has the following advantageous features inherited from IBHigncryption: (1) single pairing operation: each player performs only a single pairingoperation; (2) forward ID-privacy; (3) simple setup without master public key; (4) strong resilience to ephemeral state exposure, i.e., x-security; (5) reasonable deniability.

Category / Keywords: public-key cryptography / Identity-based cryptography; Signcryption; Identity-concealment; Higncryption

Date: received 2 Feb 2019, last revised 3 Aug 2019

Contact author: ylzhao at fudan edu cn

Available format(s): PDF | BibTeX Citation

Note: Corrected the typo that Figure-5 was identical to Figure-4.

Version: 20190803:082646 (All versions of this report)

Short URL:

[ Cryptology ePrint archive ]