Paper 2018/676

Static Power Side-Channel Analysis - An Investigation of Measurement Factors

Thorben Moos, Amir Moradi, and Bastian Richter


The static power consumption of modern CMOS devices has become a substantial concern in the context of the side-channel security of cryptographic hardware. Its continuous growth in nanometer-scaled technologies is not only inconvenient for effective low power designs, but does also create a new target for power analysis adversaries. Additionally, it has to be noted that several of the numerous sources of static power dissipation in CMOS circuits exhibit an exponential dependency on environmental factors which a classical power analysis adversary is in control of. These factors include the operating conditions temperature and supply voltage. Furthermore, in case of clock control, the measurement interval can be adjusted arbitrarily. Our experiments on a 150nm CMOS ASIC reveal that with respect to the signal-to-noise ratio in static power side-channel analyses, stretching the measurement interval decreases the noise exponentially and even more importantly that raising the working temperature increases the signal exponentially. Control over the supply voltage has a far smaller, but still noticeable, positive impact as well. In summary, a static power analysis adversary can physically force a device to leak more information by controlling its operating environment and furthermore measure these leakages with arbitrary precision by modifying the interval length.

Available format(s)
Publication info
Published elsewhere. IEEE TVLSI
static powerleakageside-channel analysisside- channel attacksASICoperating conditionstemperaturesupply voltagemeasurement interval
Contact author(s)
Thorben Moos @ rub de
2019-10-24: last of 3 revisions
2018-07-13: received
See all versions
Short URL
Creative Commons Attribution


      author = {Thorben Moos and Amir Moradi and Bastian Richter},
      title = {Static Power Side-Channel Analysis - An Investigation of Measurement Factors},
      howpublished = {Cryptology ePrint Archive, Paper 2018/676},
      year = {2018},
      doi = {10.1109/TVLSI.2019.2948141},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.