Paper 2024/365
Combined Threshold Implementation
Abstract
Physical security is an important aspect of devices for which an adversary can manipulate the physical execution environment. Recently, more and more attention has been directed towards a security model that combines the capabilities of passive and active physical attacks, i.e., an adversary that performs fault-injection and side-channel analysis at the same time. Implementing countermeasures against such a powerful adversary is not only costly but also requires the skillful combination of masking and redundancy to counteract all reciprocal effects. In this work, we propose a new methodology to generate combined-secure circuits. We show how to transform TI-like constructions to resist any adversary with the capability to tamper with internal gates and probe internal wires. For the resulting protection scheme, we can prove the combined security in a well-established theoretical security model. Since the transformation preserves the advantages of TI-like structures, the resulting circuits prove to be more efficient in the number of required bits of randomness (up to 100%), the latency in clock cycles (up to 40%), and even the area for pipelined designs (up to 40%) than the state of the art for an adversary restricted to manipulating a single gate and probing a single wire.
Metadata
- Available format(s)
- Category
- Implementation
- Publication info
- Published by the IACR in TCHES 2024
- Keywords
- Physical SecurityHardware SecurityThreshold ImplementationConsolidating Masking SchemesCombined Analysis
- Contact author(s)
-
jakob feldtkeller @ rub de
jan richter-brockmann @ rub de
pascal sasdrich @ rub de
tim gueneysu @ rub de - History
- 2024-06-26: last of 2 revisions
- 2024-02-28: received
- See all versions
- Short URL
- https://ia.cr/2024/365
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2024/365, author = {Jakob Feldtkeller and Jan Richter-Brockmann and Pascal Sasdrich and Tim Güneysu}, title = {Combined Threshold Implementation}, howpublished = {Cryptology {ePrint} Archive, Paper 2024/365}, year = {2024}, url = {https://eprint.iacr.org/2024/365} }