Paper 2024/158

HiSE: Hierarchical (Threshold) Symmetric-key Encryption

Pousali Dey, Indian Statistical Institute
Pratyay Mukherjee, Supra Research
Swagata Sasmal, Indian Statistical Institute
Rohit Sinha, Swirlds Labs
Abstract

Threshold symmetric encryption (TSE), introduced by Agrawal et al. [DiSE, CCS 2018], provides scalable and decentralized solution for symmetric encryption by ensuring that the secret-key stays distributed at all times. They avoid having a single point of attack or failure, while achieving the necessary security requirements. TSE was further improved by Christodorescu et al. [ATSE, CCS 2021] to support an amortization feature which enables a “more privileged” client to encrypt records in bulk by interacting only once with the key servers, while decryption must be performed individually for each record, potentially by a “less privileged” client. However, typical enterprises collect or generate data once and query it several times over its lifecycle in various data processing pipelines; i.e., enterprise workloads are often decryption heavy! ATSE does not meet the bar for this setting because of linear interaction / computation (in the number of records to be decrypted) – our experiments show that ATSE provides a sub-par throughput of a few hundred records / sec. We observe that a large class of queries read a subsequence of records (e.g. a time window) from the database. With this access structure in mind, we build a new TSE scheme which allows for both encryption and decryption with flexible granularity, in that a client’s interactions with the key servers is at most logarithmic in the number of records. Our idea is to employ a binary-tree access structure over the data, where only one interaction is needed to decrypt all ciphertexts within a sub-tree, and thus only log-many for any arbitrary size sub-sequence. Our scheme incorporates ideas from binary-tree encryption by Canetti et al. [Eurocrypt 2003] and its variants, and carefully merges that with Merkle-tree commitments to fit into the TSE setting. We formalize this notion as hierarchical threshold symmetric-key encryption (HiSE), and argue that our construction satisfies all essential TSE properties, such as correctness, privacy and authenticity with respect to our definition. Our analysis relies on a well-known XDH assumption and a new assumption, that we call $\ell$-masked BDDH, over asymmetric bilinear pairing in the programmable random oracle model. We also show that our new assumption does hold in generic group model. We provide an open-source implementation of HiSE. For practical parameters, we see 65$\times$ improvement in latency and throughput over ATSE. HiSE can decrypt over 6K records / sec on server-grade hardware, but the logarithmic overhead in HiSE’s encryption (not decryption) only lets us encrypt up to 3K records / sec (about 3-4.5$\times$ slowdown) and incurs roughly 500 bytes of ciphertext expansion per record – while reducing this penalty is an important future work, we believe HiSE can offer an acceptable tradeoff in practice.

Metadata
Available format(s)
PDF
Category
Cryptographic protocols
Publication info
Preprint.
Keywords
Threshold CryptographyDistributed Encryption
Contact author(s)
deypousali95 @ gmail com
pratyay85 @ gmail com
swagata sasmal @ gmail com
sinharo @ gmail com
History
2024-02-05: approved
2024-02-02: received
See all versions
Short URL
https://ia.cr/2024/158
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2024/158,
      author = {Pousali Dey and Pratyay Mukherjee and Swagata Sasmal and Rohit Sinha},
      title = {{HiSE}: Hierarchical (Threshold) Symmetric-key Encryption},
      howpublished = {Cryptology {ePrint} Archive, Paper 2024/158},
      year = {2024},
      url = {https://eprint.iacr.org/2024/158}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.