Paper 2024/022
Fully Dynamic Attribute-Based Signatures for Circuits from Codes
Abstract
Attribute-Based Signature (ABS), introduced by Maji et al. (CT-RSA'11), is an advanced privacy-preserving signature primitive that has gained a lot of attention. Research on ABS can be categorized into three main themes: expanding the expressiveness of signing policies, enabling new functionalities, and providing more diversity in terms of computational assumptions. We contribute to the development of ABS in all three dimensions, by providing a fully dynamic ABS scheme for arbitrary circuits from codes. The scheme is the first ABS from code-based assumptions and also the first ABS system offering the \texttt{full dynamicity} functionality (i.e., attributes can be enrolled and revoked simultaneously). Moreover, the scheme features much shorter signature size than a lattice-based counterpart proposed by El Kaafarani and Katsumata (PKC'18). In the construction process, we put forward a new theoretical abstraction of Stern-like zero-knowledge (ZK) protocols, which are the major tools for privacy-preserving cryptography from codes. Our main insight here actually lies in the questions we ask about the fundamental principles of Stern-like protocols that have remained unchallenged since their conception by Stern at CRYPTO'93. We demonstrate that these long-established principles are not essential, and then provide a refined framework generalizing existing Stern-like techniques and enabling enhanced constructions.
Metadata
- Available format(s)
- Publication info
- A major revision of an IACR publication in PKC 2024
- Keywords
- Attribute-based signaturescode-based cryptographyfull dynamicitynew primitivesStern-like protocols
- Contact author(s)
-
lingsan @ ntu edu sg
khoa @ uow edu au
hieu phan @ telecom-paris fr
khaihanh tang @ ntu edu sg
hxwang @ ntu edu sg
yanhong xu @ sjtu edu cn - History
- 2024-01-13: last of 2 revisions
- 2024-01-06: received
- See all versions
- Short URL
- https://ia.cr/2024/022
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2024/022, author = {San Ling and Khoa Nguyen and Duong Hieu Phan and Khai Hanh Tang and Huaxiong Wang and Yanhong Xu}, title = {Fully Dynamic Attribute-Based Signatures for Circuits from Codes}, howpublished = {Cryptology {ePrint} Archive, Paper 2024/022}, year = {2024}, url = {https://eprint.iacr.org/2024/022} }