Paper 2023/1268

Finding Orientations of Supersingular Elliptic Curves and Quaternion Orders

Sarah Arpin, Leiden University
James Clements, University of Bristol
Pierrick Dartois, Inria Bordeaux - Sud-Ouest Research Centre
Jonathan Komada Eriksen, Norwegian University of Science and Technology
Péter Kutas, Eötvös Loránd University, University of Birmingham
Benjamin Wesolowski, École Normale Supérieure de Lyon
Abstract

Orientations of supersingular elliptic curves encode the information of an endomorphism of the curve. Computing the full endomorphism ring is a known hard problem, so one might consider how hard it is to find one such orientation. We prove that access to an oracle which tells if an elliptic curve is $\mathfrak{O}$-orientable for a fixed imaginary quadratic order $\mathfrak{O}$ provides non-trivial information towards computing an endomorphism corresponding to the $\mathfrak{O}$-orientation. We provide explicit algorithms and in-depth complexity analysis. We also consider the question in terms of quaternion algebras. We provide algorithms which compute an embedding of a fixed imaginary quadratic order into a maximal order of the quaternion algebra ramified at $p$ and $\infty$. We provide code implementations in Sagemath which is efficient for finding embeddings of imaginary quadratic orders of discriminants up to $O(p)$, even for cryptographically sized $p$.

Metadata
Available format(s)
PDF
Category
Public-key cryptography
Publication info
Preprint.
Keywords
isogeny-based cryptographypublic-key cryptographycryptanalysis
Contact author(s)
s a arpin @ math leidenuniv nl
james clements @ bristol ac uk
pierrick dartois @ u-bordeaux fr
jonathan k eriksen @ ntnu no
p kutas @ bham ac uk
benjamin wesolowski @ math u-bordeaux fr
History
2023-08-24: approved
2023-08-22: received
See all versions
Short URL
https://ia.cr/2023/1268
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2023/1268,
      author = {Sarah Arpin and James Clements and Pierrick Dartois and Jonathan Komada Eriksen and Péter Kutas and Benjamin Wesolowski},
      title = {Finding Orientations of Supersingular Elliptic Curves and Quaternion Orders},
      howpublished = {Cryptology {ePrint} Archive, Paper 2023/1268},
      year = {2023},
      url = {https://eprint.iacr.org/2023/1268}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.