Paper 2022/934
On Secure Computation of Solitary Output Functionalities With and Without Broadcast
Abstract
Solitary output secure computation models scenarios, where a single entity wishes to compute a function over an input that is distributed among several mutually distrusting parties. The computation should guarantee some security properties, such as correctness, privacy, and guaranteed output delivery. Full security captures all these properties together. This setting is becoming very important, as it is relevant to many real-world scenarios, such as service providers wishing to learn some statistics on the private data of their users. In this paper, we study full security for solitary output three-party functionalities in the point-to-point model (without broadcast) assuming at most a single party is corrupted. We give a characterization of the set of three-party Boolean functionalities and functionalities with up to three possible outputs (over a polynomial-size domain) that are computable with full security in the point-to-point model against a single corrupted party. We also characterize the set of three-party functionalities (over a polynomial-size domain) where the output receiving party has no input. Using this characterization, we identify the set of parameters that allow certain functionalities related to private set intersection to be securely computable in this model. Our main technical contribution is a reinterpretation of the hexagon argument due to Fischer et al. [Distributed Computing '86]. While the original argument relies on the agreement property (i.e., all parties output the same value) to construct an attack, we extend the argument to the solitary output setting, where there is no agreement. Furthermore, using our techniques, we were also able to advance our understanding of the set of solitary output three-party functionalities that can be computed with full security, assuming broadcast but where two parties may be corrupted. Specifically, we extend the set of such functionalities that were known to be computable, due to Halevi et al. [TCC '19].
Metadata
- Available format(s)
- Category
- Cryptographic protocols
- Publication info
- Preprint.
- Keywords
- broadcastpoint-to-point communicationsecure multiparty computationsolitary outputimpossibility result
- Contact author(s)
-
alonbar08 @ gmail com
omrier @ ariel ac il - History
- 2023-05-22: revised
- 2022-07-18: received
- See all versions
- Short URL
- https://ia.cr/2022/934
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2022/934, author = {Bar Alon and Eran Omri}, title = {On Secure Computation of Solitary Output Functionalities With and Without Broadcast}, howpublished = {Cryptology {ePrint} Archive, Paper 2022/934}, year = {2022}, url = {https://eprint.iacr.org/2022/934} }