Paper 2022/686

Proof of Mirror Theory for a Wide Range of ξmax

Benoît Cogliati, Thales DIS France SAS, Meudon, France
Avijit Dutta, Institute for Advancing Intelligence, TCG-CREST, Kolkata, India
Mridul Nandi, Indian Statistical Institute, Kolkata, India, Institute for Advancing Intelligence, TCG-CREST, Kolkata, India
Jacques Patarin, Laboratoire de Mathématiques de Versailles, Versailles, France, Thales DIS France SAS, Meudon, France
Abishanka Saha, Indian Statistical Institute, Kolkata, India
Abstract

In CRYPTO'03, Patarin conjectured a lower bound on the number of distinct solutions (P1,,Pq)({0,1}n)q satisfying a system of equations of the form XiXj=λi,j such that P1,P2,, Pq are pairwise distinct. This result is known as \emph{`` Theorem for any ''} or alternatively as \emph{Mirror Theory for general }, which was later proved by Patarin in ICISC'05. Mirror theory for general stands as a powerful tool to provide a high-security guarantee for many blockcipher-(or even ideal permutation-) based designs. Unfortunately, the proof of the result contains gaps that are non-trivial to fix. In this work, we present the first complete proof of the theorem for a wide range of , typically up to order . Furthermore, our proof approach is made simpler by using a new type of equation, dubbed link-deletion equation, that roughly corresponds to half of the so-called orange equations from earlier works. As an illustration of our result, we also revisit the security proofs of two optimally secure blockcipher-based pseudorandom functions, and -bit security proof for six round Feistel cipher, and provide updated security bounds.

Metadata
Available format(s)
PDF
Category
Secret-key cryptography
Publication info
Preprint.
Keywords
Mirror theorySum of PermutationsPRPPRFH-Coefficient Technique
Contact author(s)
benoit cogliati @ gmail com
avirocks dutta13 @ gmail com
mridul nandi @ gmail com
jpatarin @ club-internet fr
sahaa 1993 @ gmail com
History
2023-02-23: last of 4 revisions
2022-05-31: received
See all versions
Short URL
https://ia.cr/2022/686
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2022/686,
      author = {Benoît Cogliati and Avijit Dutta and Mridul Nandi and Jacques Patarin and Abishanka Saha},
      title = {Proof of Mirror Theory for a Wide Range of  $\xi_{\max}$},
      howpublished = {Cryptology {ePrint} Archive, Paper 2022/686},
      year = {2022},
      url = {https://eprint.iacr.org/2022/686}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.