Paper 2022/667

Arithmetic Tuples for MPC

Toomas Krips, University of Tartu
Ralf Kuesters, University of Stuttgart
Pascal Reisert, University of Stuttgart
Marc Rivinius, University of Stuttgart

Some of the most efficient protocols for Multi-Party Computation (MPC) use a two-phase approach where correlated randomness, in particular Beaver triples, is generated in the offline phase and then used to speed up the online phase. Recently, more complex correlations have been introduced to optimize certain operations even further, such as matrix triples for matrix multiplications. In this paper, our goal is to speed up the evaluation of multivariate polynomials and therewith of whole arithmetic circuits in the online phase. To this end, we introduce a new form of correlated randomness: arithmetic tuples. Arithmetic tuples can be fine tuned in various ways to the constraints of application at hand, in terms of round complexity, bandwidth, and tuple size. We show that for many real-world setups an arithmetic tuples based online phase outperforms state-of-the-art protocols based on Beaver triples.

Available format(s)
Publication info
Secure multiparty computationMathematical aspects of cryptography
Contact author(s)
pascal reisert @ sec uni-stuttgart de
2023-03-30: last of 3 revisions
2022-05-28: received
See all versions
Short URL
Creative Commons Attribution


      author = {Toomas Krips and Ralf Kuesters and Pascal Reisert and Marc Rivinius},
      title = {Arithmetic Tuples for MPC},
      howpublished = {Cryptology ePrint Archive, Paper 2022/667},
      year = {2022},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.