Paper 2022/659
ABE for Circuits with Constant-Size Secret Keys and Adaptive Security
Abstract
An important theme in research on attribute-based encryption (ABE) is minimizing the sizes of the secret keys and ciphertexts. In this work, we present two new ABE schemes with *constant-size* secret keys, that is, the key size is independent of the sizes of policies or attributes, and dependent only on the security parameter lambda. * We construct the first key-policy ABE scheme for circuits with constant-size secret keys, |sk_f|=poly(lambda), which concretely consist of only three group elements. The previous state-of-the-art construction by [Boneh et al., Eurocrypt '14] has key size polynomial in the maximum depth d of the policy circuits, |sk_f|=poly(d,lambda). Our new scheme removes this dependency of key size on d while keeping the ciphertext size the same, which grows linearly in the attribute length and polynomially in the maximal depth, |ct|=|x|poly(d,lambda). * We present the first ciphertext-policy ABE scheme for Boolean formulae that simultaneously has constant-size keys and succinct ciphertexts of size independent of the policy formulae, in particular, |sk_f|=poly(lambda) and |ct_x|=poly(|x|,lambda). Concretely, each secret key consists of only two group elements. Previous ciphertext-policy ABE schemes either have succinct ciphertexts but non constant-size keys [Agrawal--Yamada, Eurocrypt '20; Agrawal--Wichs--Yamada, TCC '20], or constant-size keys but large ciphertexts that grow with the policy size, as well as the attribute length. Our second construction is the first ABE scheme achieving *double succinctness*, where both keys and ciphertexts are smaller than the corresponding attributes and policies tied to them. Our constructions feature new ways of combining lattices with pairing groups for building ABE and are proven selectively secure based on LWE and in the generic (pairing) group model. We further show that when replacing the LWE assumption with its adaptive variant introduced in [Quach--Wee--Wichs FOCS '18] the constructions become adaptively secure.
Metadata
- Available format(s)
- Category
- Public-key cryptography
- Publication info
- Preprint.
- Keywords
- attribute-based encryptioninner-product functional encryptionlatticespairinggeneric group model
- Contact author(s)
-
hanjul @ cs washington edu
rachel @ cs washington edu
luoji @ cs washington edu - History
- 2022-05-31: approved
- 2022-05-27: received
- See all versions
- Short URL
- https://ia.cr/2022/659
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2022/659, author = {Hanjun Li and Huijia Lin and Ji Luo}, title = {{ABE} for Circuits with Constant-Size Secret Keys and Adaptive Security}, howpublished = {Cryptology {ePrint} Archive, Paper 2022/659}, year = {2022}, url = {https://eprint.iacr.org/2022/659} }