Paper 2022/271

Approximate Divisor Multiples -- Factoring with Only a Third of the Secret CRT-Exponents

Alexander May, Julian Nowakowski, and Santanu Sarkar


We address Partial Key Exposure attacks on CRT-RSA on secret exponents $d_p, d_q$ with small public exponent $e$. For constant $e$ it is known that the knowledge of half of the bits of one of $d_p, d_q$ suffices to factor the RSA modulus $N$ by Coppersmith's famous {\em factoring with a hint} result. We extend this setting to non-constant $e$. Somewhat surprisingly, our attack shows that RSA with $e$ of size $N^{\frac 1 {12}}$ is most vulnerable to Partial Key Exposure, since in this case only a third of the bits of both $d_p, d_q$ suffices to factor $N$ in polynomial time, knowing either most significant bits (MSB) or least significant bits (LSB). Let $ed_p = 1 + k(p-1)$ and $ed_q = 1 + \ell(q-1)$. On the technical side, we find the factorization of $N$ in a novel two-step approach. In a first step we recover $k$ and $\ell$ in polynomial time, in the MSB case completely elementary and in the LSB case using Coppersmith's lattice-based method. We then obtain the prime factorization of $N$ by computing the root of a univariate polynomial modulo $kp$ for our known $k$. This can be seen as an extension of Howgrave-Graham's {\em approximate divisor} algorithm to the case of {\em approximate divisor multiples} for some known multiple $k$ of an unknown divisor $p$ of $N$. The point of {\em approximate divisor multiples} is that the unknown that is recoverable in polynomial time grows linearly with the size of the multiple $k$. Our resulting Partial Key Exposure attack with known MSBs is completely rigorous, whereas in the LSB case we rely on a standard Coppersmith-type heuristic. We experimentally verify our heuristic, thereby showing that in practice we reach our asymptotic bounds already using small lattice dimensions. Thus, our attack is highly efficient.

Available format(s)
Public-key cryptography
Publication info
Published by the IACR in Eurocrypt 2022
Coppersmith's methodCRT-RSAPartial Key Exposure.
Contact author(s)
julian nowakowski @ rub de
2022-03-02: received
Short URL
Creative Commons Attribution


      author = {Alexander May and Julian Nowakowski and Santanu Sarkar},
      title = {Approximate Divisor Multiples -- Factoring with Only a Third of the Secret CRT-Exponents},
      howpublished = {Cryptology ePrint Archive, Paper 2022/271},
      year = {2022},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.