Paper 2022/1688
Funshade: Function Secret Sharing for Two-Party Secure Thresholded Distance Evaluation
Abstract
We propose a novel privacy-preserving, two-party computation of various distance metrics (e.g., Hamming distance, Scalar Product) followed by a comparison with a fixed threshold, which is known as one of the most useful and popular building blocks for many different applications including machine learning, biometric matching, etc. Our solution builds upon recent advances in function secret sharing and makes use of an optimized version of arithmetic secret sharing. Thanks to this combination, our new solution named Funshade is the first to require only one round of communication and two ring elements of communication in the online phase, outperforming all prior state-of-the-art schemes while relying on lightweight cryptographic primitives. Lastly, we implement our solution from scratch in portable C and expose it in Python, testifying its high performance by running secure biometric identification against a database of 1 million records in ∼10 seconds with full correctness and 32-bit precision, without parallelization.
Note: Published version
Metadata
- Available format(s)
- Category
- Cryptographic protocols
- Publication info
- Published elsewhere. Minor revision. PETS23
- DOI
- 10.56553/popets-2023-0096
- Keywords
- Functional Secret SharingSecure Two Party Computation2PCScalar ProductHamming Distance
- Contact author(s)
-
ibarrond @ eurecom fr
herve chabanne @ telecom-paris fr
melek onen @ eurecom fr - History
- 2024-02-27: last of 2 revisions
- 2022-12-05: received
- See all versions
- Short URL
- https://ia.cr/2022/1688
- License
-
CC BY-NC-SA
BibTeX
@misc{cryptoeprint:2022/1688, author = {Alberto Ibarrondo and Hervé Chabanne and Melek Önen}, title = {Funshade: Function Secret Sharing for Two-Party Secure Thresholded Distance Evaluation}, howpublished = {Cryptology {ePrint} Archive, Paper 2022/1688}, year = {2022}, doi = {10.56553/popets-2023-0096}, url = {https://eprint.iacr.org/2022/1688} }