Since efficient graph analysis could be performed on transaction graphs to potentially deanonymise signers, it is crucial to understand the resistance of (the transaction graphs induced by) a ring sampler against graph analysis. Of particular interest is the class of partitioning ring samplers. Although previous works showed that they provide almost optimal local anonymity, their resistance against global, e.g. graph-based, attacks were unclear.
In this work, we analyse transaction graphs induced by partitioning ring samplers. Specifically, we show (partly analytically and partly empirically) that, somewhat surprisingly, by setting the ring size to be at least logarithmic in the number of users, a graph-analysing adversary is no better than the one that performs random guessing in deanonymisation up to constant factor of 2.
Category / Keywords: anonymous cryptocurrencies, ring signatures, random directed graph connectivity Original Publication (in the same form): PoPETs 2022