Paper 2022/1069

A Theoretical Framework for the Analysis of Physical Unclonable Function Interfaces and its Relation to the Random Oracle Model

Marten van Dijk, CWI Amsterdam
Chenglu Jin, CWI Amsterdam
Abstract

Analysis of advanced Physical Unclonable Function (PUF) applications and protocols rely on assuming that a PUF behaves like a random oracle, that is, upon receiving a challenge, a uniform random response with replacement is selected, measurement noise is added, and the resulting response is returned. In order to justify such an assumption, we need to rely on digital interface computation that to some extent remains confidential -- otherwise, information about PUF challenge response pairs leak with which the adversary can train a prediction model for the PUF. We introduce a theoretical framework that allows the adversary to have a prediction model (with a typical accuracy of 75\% for predicting response bits for state-of-the-art silicon PUF designs). We do not require any confidential digital computing or digital secrets while we can still prove rigorous statements about the bit security of a system that interfaces with the PUF. In particular, we prove the bit security of a PUF-based random oracle construction; this merges the PUF framework with fuzzy extractors.

Metadata
Available format(s)
PDF
Category
Foundations
Publication info
Preprint.
Keywords
Physical Unclonable Function (PUF) Fuzzy Extractor Random Oracle Trusted Computing Base (TCB)
Contact author(s)
marten van dijk @ cwi nl
chenglu jin @ cwi nl
History
2022-11-09: revised
2022-08-17: received
See all versions
Short URL
https://ia.cr/2022/1069
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2022/1069,
      author = {Marten van Dijk and Chenglu Jin},
      title = {A Theoretical Framework for the Analysis of Physical Unclonable Function Interfaces and its Relation to the Random Oracle Model},
      howpublished = {Cryptology ePrint Archive, Paper 2022/1069},
      year = {2022},
      note = {\url{https://eprint.iacr.org/2022/1069}},
      url = {https://eprint.iacr.org/2022/1069}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.