Cryptology ePrint Archive: Report 2021/783

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep Neural Network

Joon-Woo Lee and HyungChul Kang and Yongwoo Lee and Woosuk Choi and Jieun Eom and Maxim Deryabin and Eunsang Lee and Junghyun Lee and Donghoon Yoo and Young-Sik Kim and Jong-Seon No

Abstract: Fully homomorphic encryption (FHE) is one of the prospective tools for privacypreserving machine learning (PPML), and several PPML models have been proposed based on various FHE schemes and approaches. Although the FHE schemes are known as suitable tools to implement PPML models, previous PPML models on FHE encrypted data are limited to only simple and non-standard types of machine learning models. These non-standard machine learning models are not proven efficient and accurate with more practical and advanced datasets. Previous PPML schemes replace non-arithmetic activation functions with simple arithmetic functions instead of adopting approximation methods and do not use bootstrapping, which enables continuous homomorphic evaluations. Thus, they could not use standard activation functions and could not employ a large number of layers. The maximum classification accuracy of the existing PPML model with the FHE for the CIFAR-10 dataset was only 77% until now. In this work, we firstly implement the standard ResNet-20 model with the RNS-CKKS FHE with bootstrapping and verify the implemented model with the CIFAR-10 dataset and the plaintext model parameters. Instead of replacing the non-arithmetic functions with the simple arithmetic function, we use state-of-the-art approximation methods to evaluate these non-arithmetic functions, such as the ReLU, with sufficient precision [1]. Further, for the first time, we use the bootstrapping technique of the RNS-CKKS scheme in the proposed model, which enables us to evaluate a deep learning model on the encrypted data. We numerically verify that the proposed model with the CIFAR-10 dataset shows 98.67% identical results to the original ResNet-20 model with non-encrypted data. The classification accuracy of the proposed model is 90.67%, which is pretty close to that of the original ResNet-20 CNN model. It takes about 4 hours for inference on a dual Intel Xeon Platinum 8280 CPU (112 cores) with 512 GB memory. We think that it opens the possibility of applying the FHE to the advanced deep PPML model.

Category / Keywords: applications / Privacy-preserving machine learning, ResNet, RNS-CKKS homomorphic encryption

Date: received 9 Jun 2021

Contact author: joonwoo3511 at ccl snu ac kr, hc1803 kang at samsung com, yw0803 lee at samsung com, woosuk0 choi at samsung com, jieun eom at samsung com, max deriabin at samsung com, eslee3209 at ccl snu ac kr, jhlee at ccl snu ac kr, say yoo at samsung com, iamyskim at chosun ac kr, jsno at snu ac kr

Available format(s): PDF | BibTeX Citation

Version: 20210610:085626 (All versions of this report)

Short URL: ia.cr/2021/783


[ Cryptology ePrint archive ]