Cryptology ePrint Archive: Report 2021/572

Sine Series Approximation of the Mod Function for Bootstrapping of Approximate HE

Charanjit Singh Jutla and Nathan Manohar

Abstract: While it is well known that the sawtooth function has a point-wise convergent Fourier series, the rate of convergence is not the best possible for the application of approximating the mod function in small intervals around multiples of the modulus. We show a different sine series, such that the sine series of order n has error O(epsilon^(2n+1)) for approximating the mod function in epsilon-sized intervals around multiples of the modulus. Moreover, the resulting polynomial, after Taylor series approximation of the sine series, has small coefficients, and the whole polynomial can be computed at a precision that is only slightly larger than -(2n+1)log epsilon, the precision of approximation being sought. This polynomial can then be used to approximate the mod function to almost arbitrary precision, and hence allows practical CKKS-HE bootstrapping with arbitrary precision. We validate our approach with an implementation and obtain 100 bit precision bootstrapping as well as improvements over earlier works at lower precision.

Category / Keywords: public-key cryptography / FHE, Fourier series, Sine series, alternating series, mod function, bootstrapping

Date: received 30 Apr 2021, last revised 1 Oct 2021

Contact author: nmanohar at cs ucla edu, csjutla at us ibm com

Available format(s): PDF | BibTeX Citation

Version: 20211001:164246 (All versions of this report)

Short URL:

[ Cryptology ePrint archive ]