Paper 2021/564

SMILE: Set Membership from Ideal Lattices with Applications to Ring Signatures and Confidential Transactions

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler

Abstract

In a set membership proof, the public information consists of a set of elements and a commitment. The prover then produces a zero-knowledge proof showing that the commitment is indeed to some element from the set. This primitive is closely related to concepts like ring signatures and ``one-out-of-many'' proofs that underlie many anonymity and privacy protocols. The main result of this work is a new succinct lattice-based set membership proof whose size is logarithmic in the size of the set. We also give a transformation of our set membership proof to a ring signature scheme. The ring signature size is also logarithmic in the size of the public key set and has size $16$ KB for a set of $2^5$ elements, and $22$ KB for a set of size $2^{25}$. At an approximately $128$-bit security level, these outputs are between 1.5X and 7X smaller than the current state of the art succinct ring signatures of Beullens et al. (Asiacrypt 2020) and Esgin et al. (CCS 2019). We then show that our ring signature, combined with a few other techniques and optimizations, can be turned into a fairly efficient Monero-like confidential transaction system based on the MatRiCT framework of Esgin et al. (CCS 2019). With our new techniques, we are able to reduce the transaction proof size by factors of about 4X - 10X over the aforementioned work. For example, a transaction with two inputs and two outputs, where each input is hidden among $2^{15}$ other accounts, requires approximately $30$KB in our protocol.

Note: In submission.

Metadata
Available format(s)
PDF
Category
Public-key cryptography
Publication info
A major revision of an IACR publication in CRYPTO 2021
DOI
10.1007/978-3-030-84245-1_21
Keywords
LatticesZero-Knowledge ProofsRing SignaturesBlockchain
Contact author(s)
vad @ zurich ibm com
nkn @ zurich ibm com
gseiler @ inf ethz ch
History
2022-05-20: last of 4 revisions
2021-05-03: received
See all versions
Short URL
https://ia.cr/2021/564
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2021/564,
      author = {Vadim Lyubashevsky and Ngoc Khanh Nguyen and Gregor Seiler},
      title = {{SMILE}: Set Membership from Ideal Lattices with Applications to Ring Signatures and Confidential Transactions},
      howpublished = {Cryptology {ePrint} Archive, Paper 2021/564},
      year = {2021},
      doi = {10.1007/978-3-030-84245-1_21},
      url = {https://eprint.iacr.org/2021/564}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.