We first provide a framework for proving adaptive security in Attribute-Based Encryption systems. We introduce a concept of ABE with deletable attributes where any party can take a ciphertext encrypted under the attribute string $x \in \{0, 1\}^n$ and modify it into a ciphertext encrypted under any string $x' \in \{0, 1, \bot\}^n$ where $x'$ is derived by replacing any bits of $x$ with $\bot$ symbols (i.e. ``deleting" attributes of $x$). The semantics of the system are that any private key for a circuit $C$ can be used to decrypt a ciphertext associated with $x'$ if none of the input bits read by circuit $C$ are $\bot$ symbols and $C(x') = 1$.
We show a pathway for combining ABE with deletable attributes with constrained psuedorandom functions to obtain adaptively secure ABE building upon the recent work of Tsabary. Our new ABE system will be adaptively secure and be a ciphertext-policy ABE that supports the same functionality as the underlying constrained PRF as long as the PRF is ``deletion conforming". Here we also provide a simple constrained PRF construction that gives subset functionality.
Our approach enables us to access a broader array of Attribute-Based Encryption schemes support deletion of attributes. For example, we show that both the Goyal~et al.~(GPSW) and Boyen ABE schemes can trivially handle a deletion operation. And, by using a hardcore bit variant of GPSW scheme we obtain an adaptively secure ABE scheme under the Search Bilinear Diffie-Hellman assumption in addition to pseudo random functions in NC1. This gives the first adaptively secure ABE from a search assumption as all prior work relied on decision assumptions over source group elements.
Category / Keywords: public-key cryptography / attribute-based, bilinear, adaptive security, constrained PRFs Date: received 16 Mar 2021 Contact author: goyal at utexas edu,jiahui@cs utexas edu,bwaters@cs utexas edu Available format(s): PDF | BibTeX Citation Version: 20210317:153437 (All versions of this report) Short URL: ia.cr/2021/343