Paper 2021/1695

Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over $\mathbb F_p^n$

Lorenzo Grassi, Silvia Onofri, Marco Pedicini, and Luca Sozzi

Abstract

Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC-, FHE- and ZK-friendly symmetric-key primitives that minimize the number of multiplications over $\mathbb F_p$ for a large prime $p$ have been recently proposed in the literature. This goal is often achieved by instantiating the non-linear layer via power maps $x\mapsto x^d$. In this paper, we start an analysis of new non-linear permutation functions over $\mathbb F_p^n$ that can be used as building blocks in such symmetric-key primitives. Given a local map $F:\mathbb F_p^m \rightarrow \mathbb F_p$, we limit ourselves to focus on S-Boxes over $\mathbb F_p^n$ for $n\ge m$ defined as $\mathcal S(x_0, x_1, \ldots, x_{n-1}) = y_0\| y_1\| \ldots \| y_{n-1}$ where $y_i := F(x_i, x_{i+1}, \ldots, x_{i+m-1} )$. As main results, we prove that - given any quadratic function $F:\mathbb F_p^2 \rightarrow \mathbb F_p$, the corresponding S-Box $\mathcal S$ over $\mathbb F_p^n$ for $n\ge 3$ is never invertible; - similarly, given any quadratic function $F:\mathbb F_p^3 \rightarrow \mathbb F_p$, the corresponding S-Box $\mathcal S$ over $\mathbb F_p^n$ for $n\ge 5$ is never invertible. Moreover, for each $p\ge 3$, we present (1st) generalizations of the Lai-Massey construction over $\mathbb F_p^n$ defined as before via functions $F:\mathbb F_p^m \rightarrow \mathbb F_p$ for each $n=m\ge 2$ and (2nd) (non-trivial) quadratic functions $F:\mathbb F_p^3 \rightarrow \mathbb F_p$ such that $\mathcal S$ over $\mathbb F_p^n$ for $n\in \{3,4\}$ is invertible. As an open problem for future work, we conjecture that for each $m\ge 1$ there exists a finite integer $n_{max}(m)$ such that $\mathcal S$ over $\mathbb F_p^n$ defined as before via a quadratic function $F:\mathbb F_p^m \rightarrow \mathbb F_p$ is not invertible for each $n\ge n_{max}(m)$. Finally, as a concrete application, we propose Neptune, a variant of the sponge hash function Poseidon, whose non-linear layer is designed by taking into account the results presented in this paper. We show that this variant leads to a concrete multiplication reduction with respect to Poseidon.

Note: Typos corrected

Metadata
Available format(s)
PDF
Category
Secret-key cryptography
Publication info
Preprint.
Keywords
FHEZK-Friendly Schemes -- Poseidon
Contact author(s)
lgrassi @ science ru nl
History
2021-12-30: last of 3 revisions
2021-12-30: received
See all versions
Short URL
https://ia.cr/2021/1695
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2021/1695,
      author = {Lorenzo Grassi and Silvia Onofri and Marco Pedicini and Luca Sozzi},
      title = {Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over $\mathbb F_p^n$},
      howpublished = {Cryptology ePrint Archive, Paper 2021/1695},
      year = {2021},
      note = {\url{https://eprint.iacr.org/2021/1695}},
      url = {https://eprint.iacr.org/2021/1695}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.