Paper 2021/1629
Increment of Insecure RSA Private Exponent Bound Through Perfect Square RSA Diophantine Parameters Cryptanalysis
Wan Nur Aqlili Ruzai, Abderrahmane Nitaj, Muhammad Rezal Kamel Ariffin, Zahari Mahad, and Muhammad Asyraf Asbullah
Abstract
The public parameters of the RSA cryptosystem are represented by the pair of integers
Metadata
- Available format(s)
-
PDF
- Category
- Public-key cryptography
- Publication info
- Published elsewhere. Minor revision. Computer Standards & Interfaces
- DOI
- 10.1016/j.csi.2021.103584
- Keywords
- RSA cryptosystemalgebraic cryptanalysisinteger factorization problemDiophantine approximationlattice basis reductionkleptography
- Contact author(s)
- abderrahmane nitaj @ unicaen fr
- History
- 2021-12-17: received
- Short URL
- https://ia.cr/2021/1629
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2021/1629, author = {Wan Nur Aqlili Ruzai and Abderrahmane Nitaj and Muhammad Rezal Kamel Ariffin and Zahari Mahad and Muhammad Asyraf Asbullah}, title = {Increment of Insecure {RSA} Private Exponent Bound Through Perfect Square {RSA} Diophantine Parameters Cryptanalysis}, howpublished = {Cryptology {ePrint} Archive, Paper 2021/1629}, year = {2021}, doi = {10.1016/j.csi.2021.103584}, url = {https://eprint.iacr.org/2021/1629} }