Cryptology ePrint Archive: Report 2021/1573

Improved Security Bound of \textsf{(E/D)WCDM}

Nilanjan Datta and Avijit Dutta and Kushankur Dutta

Abstract: In CRYPTO'16, Cogliati and Seurin proposed a block cipher based nonce based MAC, called {\em Encrypted Wegman-Carter with Davies-Meyer} (\textsf{EWCDM}), that gives $2n/3$ bit MAC security in the nonce respecting setting and $n/2$ bit security in the nonce misuse setting, where $n$ is the block size of the underlying block cipher. However, this construction requires two independent block cipher keys. In CRYPTO'18, Datta et al. came up with a single-keyed block cipher based nonce based MAC, called {\em Decrypted Wegman-Carter with Davies-Meyer} (\textsf{DWCDM}), that also provides $2n/3$ bit MAC security in the nonce respecting setting and $n/2$ bit security in the nonce misuse setting. However, the drawback of \textsf{DWCDM} is that it takes only $2n/3$ bit nonce. In fact, authors have shown that \textsf{DWCDM} cannot achieve beyond the birthday bound security with $n$ bit nonces. In this paper, we prove that \textsf{DWCDM} with $3n/4$ bit nonces provides MAC security up to $O(2^{3n/4})$ MAC queries against all nonce respecting adversaries. We also improve the MAC bound of \textsf{EWCDM} from $2n/3$ bit to $3n/4$ bit. The backbone of these two results is a refined treatment of extended mirror theory that systematically estimates the number of solutions to a system of bivariate affine equations and non-equations, which we apply on the security proofs of the constructions to achieve $3n/4$ bit security.

Category / Keywords: secret-key cryptography / Wegman Carter, Extended Mirror Theory, Nonce Based MAC, EWCDM, DWCDM.

Original Publication (in the same form): IACR-FSE-2021

Date: received 1 Dec 2021

Contact author: nilanjan datta at tcgcrest org, avirocks dutta13 at gmail com, kushankur29 at gmail com

Available format(s): PDF | BibTeX Citation

Version: 20211203:075626 (All versions of this report)

Short URL: ia.cr/2021/1573


[ Cryptology ePrint archive ]