Cryptology ePrint Archive: Report 2021/1567

Structural and Statistical Analysis of Multidimensional Linear Approximations of Random Functions and Permutations

Tomer Ashur and Mohsin Khan and Kaisa Nyberg

Abstract: The goal of this paper is to investigate linear approximations of random functions and permutations. Our motivation is twofold. First, before the distinguishability of a practical cipher from an ideal one can be analysed, the cryptanalyst must have an accurate understanding of the statistical behaviour of the ideal cipher. Secondly, this issue has been neglected both in old and in more recent studies, particularly when multiple linear approximations are being used simultaneously. Traditional models have been based on the average behaviour and simplified using other assumptions such as independence of the linear approximations. Multidimensional cryptanalysis was introduced to avoid making artificial assumptions about statistical independence of linear approximations. On the other hand, it has the drawback of including many trivial approximations that do not contribute to the attack but just cause a waste of time and memory. We show for the first time in this paper that the trivial approximations reduce the degree of freedom of the related χ² distribution. Previously, the affine linear cryptanalysis was proposed to allow removing trivial approximations and, at the same time, admitting a solid statistical model. In this paper, we identify another type of multidimensional linear approximation, called Davies-Meyer approximation, which has similar advantages, and present full statistical models for both the affine and the Davies-Meyer type of multidimensional linear approximations. The new models given in this paper are realistic, accurate and easy to use. They are backed up by standard statistical tools such as Pearson’s χ² test and finite population correction and demonstrated to work accurately using practical examples.

Category / Keywords: secret-key cryptography / block ciphers, linear cryptanalysis, random Boolean functions, statistical distributions

Original Publication (in the same form): IEEE Transactions on Information Theory
DOI:
10.1109/TIT.2021.3128618

Date: received 30 Nov 2021

Contact author: t ashur at tue nl

Available format(s): PDF | BibTeX Citation

Version: 20211202:024225 (All versions of this report)

Short URL: ia.cr/2021/1567


[ Cryptology ePrint archive ]