A Non-heuristic Approach to Time-space Tradeoffs and Optimizations for BKW
Hanlin Liu, Shanghai Jiao Tong University
Yu Yu, Shanghai Jiao Tong University
Abstract
Blum, Kalai and Wasserman (JACM 2003) gave the first sub-exponential algorithm to solve the Learning Parity with Noise (LPN) problem. In particular, consider the LPN problem with constant noise . The BKW solves it with space complexity and time/sample complexity for small constant . We propose a variant of the BKW by tweaking Wagner's generalized birthday problem (Crypto 2002) and adapting the technique to a -ary tree structure. In summary, our algorithm achieves the following:
(Time-space tradeoff). We obtain the same time-space tradeoffs for LPN and LWE as those given by Esser et al. (Crypto 2018), but without resorting to any heuristics. For any , our algorithm solves the LPN problem with time/sample complexity and space complexity , where one can use Grover's quantum algorithm or Dinur et al.'s dissection technique (Crypto 2012) to further accelerate/optimize the time complexity.
(Time/sample optimization). A further adjusted variant of our algorithm solves the LPN problem with sample, time and space complexities all kept at for , saving factor in time/sample compared to the original BKW, and the variant of Devadas et al. (TCC 2017). This benefits from a careful analysis of the error distribution among the correlated candidates, and therefore avoids repeating the same process times on fresh new samples.
(Sample reduction) Our algorithm provides an alternative to Lyubashevsky's BKW variant (RANDOM 2005) for LPN with a restricted amount of samples. In particular, given (resp., ) samples, our
algorithm saves a factor of (resp., ) for constant in running time while consuming roughly the same space, compared with Lyubashevsky's algorithm.
We seek to bridge the gaps between theoretical and heuristic LPN solvers, but take a different approach from Devadas et al. (TCC 2017). We exploit weak yet sufficient conditions (e.g., pairwise independence), and the analysis uses only elementary tools (e.g., Chebyshev's inequality).
@misc{cryptoeprint:2021/1343,
author = {Hanlin Liu and Yu Yu},
title = {A Non-heuristic Approach to Time-space Tradeoffs and Optimizations for {BKW}},
howpublished = {Cryptology {ePrint} Archive, Paper 2021/1343},
year = {2021},
url = {https://eprint.iacr.org/2021/1343}
}
Note: In order to protect the privacy of readers, eprint.iacr.org
does not use cookies or embedded third party content.