Paper 2021/1128

Continuously Non-Malleable Secret Sharing: Joint Tampering, Plain Model and Capacity

Gianluca Brian, Antonio Faonio, and Daniele Venturi


We study non-malleable secret sharing against joint leakage and joint tampering attacks. Our main result is the first threshold secret sharing scheme in the plain model achieving resilience to noisy-leakage and continuous tampering. The above holds under (necessary) minimal computational assumptions (i.e., the existence of one-to-one one-way functions), and in a model where the adversary commits to a fixed partition of all the shares into non-overlapping subsets of at most $t-1$ shares (where $t$ is the reconstruction threshold), and subsequently jointly leaks from and tampers with the shares within each partition. We also study the capacity (i.e., the maximum achievable asymptotic information rate) of continuously non-malleable secret sharing against joint continuous tampering attacks. In particular, we prove that whenever the attacker can tamper jointly with $k > t/2$ shares, the capacity is at most $t - k$. The rate of our construction matches this upper bound. An important corollary of our results is the first non-malleable secret sharing scheme against independent tampering attacks breaking the rate-one barrier (under the same computational assumptions as above).

Available format(s)
Publication info
A minor revision of an IACR publication in TCC 2021
secret sharingnon-malleabilityleakage resilience.
Contact author(s)
brian @ di uniroma1 it
venturi @ di uniroma1 it
antonio faonio @ eurecom fr
2021-09-06: received
Short URL
Creative Commons Attribution


      author = {Gianluca Brian and Antonio Faonio and Daniele Venturi},
      title = {Continuously Non-Malleable Secret Sharing: Joint Tampering, Plain Model and Capacity},
      howpublished = {Cryptology ePrint Archive, Paper 2021/1128},
      year = {2021},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.