Paper 2021/037

New First-Order Secure AES Performance Records

Aein Rezaei Shahmirzadi, Dušan Božilov, and Amir Moradi


Being based on a sound theoretical basis, masking schemes are commonly applied to protect cryptographic implementations against Side-Channel Analysis (SCA) attacks. Constructing SCA-protected AES, as the most widely deployed block cipher, has been naturally the focus of several research projects, with a direct application in industry. The majority of SCA-secure AES implementations introduced to the community opted for low area and latency overheads considering Application-Specific Integrated Circuit (ASIC) platforms. Albeit a few, those which particularly targeted Field Programmable Gate Arrays (FPGAs) as the implementation platform yield either a low throughput or a not-highly secure design. In this work, we fill this gap by introducing first-order glitch-extended probing secure masked AES implementations highly optimized for FPGAs, which support both encryption and decryption. Compared to the state of the art, our designs efficiently map the critical non-linear parts of the masked S-box into the built-in Block RAMs (BRAMs). The most performant variant of our constructions accomplishes five first-order secure AES encryptions/decryptions simultaneously in 50 clock cycles. Compared to the equivalent state-of-the-art designs, this leads to at least 70% reduction in utilization of FPGA resources (slices) at the cost of occupying BRAMs. Last but not least, we provide a wide range of such secure and efficient implementations supporting a large set of applications, ranging from low-area to high-throughput.

Note: Compared to the original publication, ASIC performance results are added.

Available format(s)
Publication info
A minor revision of an IACR publication in TCHES 2021
Side-Channel AnalysisMaskingFPGAThreshold ImplementationAES
Contact author(s)
amir moradi @ rub de
aein rezaeishahmirzadi @ rub de
2021-02-26: last of 3 revisions
2021-01-12: received
See all versions
Short URL
Creative Commons Attribution


      author = {Aein Rezaei Shahmirzadi and Dušan Božilov and Amir Moradi},
      title = {New First-Order Secure AES Performance Records},
      howpublished = {Cryptology ePrint Archive, Paper 2021/037},
      year = {2021},
      doi = {10.46586/tches.v2021.i2.304-327},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.