Paper 2020/902

Federated Learning in Side-Channel Analysis

Huanyu Wang and Elena Dubrova

Abstract

Recently introduced federated learning is an attractive framework for the distributed training of deep learning models with thousands of participants. However, it can potentially be used with malicious intent. For example, adversaries can use their smartphones to jointly train a classifier for extracting secret keys from the smartphones' SIM cards without sharing their side-channel measurements with each other. With federated learning, each participant might be able to create a strong model in the absence of sufficient training data. Furthermore, they preserve their anonymity. In this paper, we investigate this new attack vector in the context of side-channel attacks. We compare the federated learning, which aggregates model updates submitted by N participants, with two other aggregating approaches: (1) training on combined side-channel data from N devices, and (2) using an ensemble of N individually trained models. Our first experiments on 8-bit Atmel ATxmega128D4 microcontroller implementation of AES show that federated learning is capable of outperforming the other approaches.

Metadata
Available format(s)
PDF
Publication info
Preprint. MINOR revision.
Keywords
Federated learningside-channel attackAES
Contact author(s)
huanyu @ kth se
dubrova @ kth se
History
2020-07-18: received
Short URL
https://ia.cr/2020/902
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2020/902,
      author = {Huanyu Wang and Elena Dubrova},
      title = {Federated Learning in Side-Channel Analysis},
      howpublished = {Cryptology {ePrint} Archive, Paper 2020/902},
      year = {2020},
      url = {https://eprint.iacr.org/2020/902}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.