In Time-Specific Signatures (TSS) parameterized by an integer , a signer with a secret-key associated with a numerical value can anonymously, i.e., without revealing , sign a message under a numerical range such that . An application of TSS is anonymous questionnaire, where each user associated with a numerical value such as age, date, salary, geographical position (represented by longitude and latitude) and etc., can anonymously fill in a questionnaire in an efficient manner.
In this paper, we propose two \textit{polylogarithmically} efficient TSS constructions based on asymmetric pairing with groups of prime order, which achieve different characteristics in efficiency. In the first one based on a forward-secure signatures scheme concretely obtained from a hierarchical identity-based signatures scheme proposed by Chutterjee and Sarker (IJACT'13), size of the master public-key, size of a secret-key and size of a signature are asymptotically , and size of the master secret-key is . In the second one based on a wildcarded identity-based ring signatures scheme obtained as an instantiation of an attribute-based signatures scheme proposed by Sakai, Attrapadung and Hanaoka (PKC'16), the sizes are , , and , respectively.