Cryptology ePrint Archive: Report 2020/173

Securing Proof-of-Work Ledgers via Checkpointing

Dimitris Karakostas and Aggelos Kiayias

Abstract: Our work explores mechanisms that secure a distributed ledger in the presence of adversarial mining majorities. Distributed ledgers based on the Proof-of-Work (PoW) paradigm are typically most vulnerable when mining participation is low. During these periods an attacker can mount devastating attacks, such as double spending or censorship of transactions. We put forth the first rigorous study of checkpointing as a mechanism to protect distributed ledgers from such 51% attacks. The core idea is to employ an external set of parties that assist the ledger by finalizing blocks shortly after their creation. This service takes the form of checkpointing and timestamping; checkpointing ensures low latency in a federated setting, while timestamping is fully decentralized. Contrary to existing checkpointing designs, ours is the first to ensure both consistency and liveness. We identify a previously undocumented attack against liveness, “block lead”, which enables Denial-of-Service and censorship to take place in existing checkpointed settings. We showcase our results on a checkpointed version of Ethereum Classic, a system which recently suffered a 51% attack, and build a federated distributed checkpointing service, which provides high assurance with low performance requirements. Finally, we fully decentralize our scheme, in the form of timestamping on a secure distributed ledger, and evaluate its performance using Bitcoin and Ethereum.

Category / Keywords: cryptographic protocols / blockchain, checkpoints, timestamping, Proof-of-Work

Date: received 13 Feb 2020, last revised 27 Jan 2021

Contact author: dimitris karakostas at ed ac uk

Available format(s): PDF | BibTeX Citation

Version: 20210127:115814 (All versions of this report)

Short URL: ia.cr/2020/173


[ Cryptology ePrint archive ]