Paper 2020/1609
A new method for secondary constructions of vectorial bent functions
Amar Bapić and Enes Pasalic
Abstract
In 2017, Tang et al. have introduced a generic construction for bent functions of the form $f(x)=g(x)+h(x)$, where $g$ is a bent function satisfying some conditions and $h$ is a Boolean function. Recently, Zheng et al. generalized this result to construct large classes of bent vectorial Boolean function from known ones in the form $F(x)=G(x)+h(X)$, where $G$ is a bent vectorial and $h$ a Boolean function. In this paper we further generalize this construction to obtain vectorial bent functions of the form $F(x)=G(x)+\mathbf{H}(X)$, where $\mathbf{H}$ is also a vectorial Boolean function. This allows us to construct new infinite families of vectorial bent functions, EA-inequivalent to $G$, which was used in the construction. Most notably, specifying $\mathbf{H } (x)=\mathbf{h} (Tr_1^n(u_1x),\ldots,Tr_1^n(u_tx))$, the function $\mathbf{h} :\mathbb{F}_2^t \rightarrow \mathbb{F}_{2^t}$ can be chosen arbitrary which gives a relatively large class of different functions for a fixed function $G$. We also propose a method of constructing vectorial $(n,n)$-functions having maximal number of bent components.
Metadata
- Available format(s)
- Publication info
- Preprint. MINOR revision.
- Keywords
- Bent functionsVectorial bent functionsAlgebraic degreeEA equivalenceCCZ equivalenceMaximal number of bent components
- Contact author(s)
- amar bapic @ famnit upr si
- History
- 2020-12-27: received
- Short URL
- https://ia.cr/2020/1609
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2020/1609, author = {Amar Bapić and Enes Pasalic}, title = {A new method for secondary constructions of vectorial bent functions}, howpublished = {Cryptology {ePrint} Archive, Paper 2020/1609}, year = {2020}, url = {https://eprint.iacr.org/2020/1609} }