As cryptography is one of the cornerstones of secure communication among devices, the pertinence of fault attacks is becoming increasingly apparent in a setting where a device can be easily accessed in a physical manner. In particular, two recently proposed fault attacks, Statistical Ineffective Fault Attack (SIFA) and the Fault Template Attack (FTA) are shown to be formidable due to their capability to bypass the common duplication based countermeasures. Duplication based countermeasures, deployed to counter the Differential Fault Attack (DFA), work by duplicating the execution of the cipher followed by a comparison to sense the presence of any effective fault, followed by an appropriate recovery procedure. While a handful of countermeasures are proposed against SIFA, no such countermeasure is known to thwart FTA to date.
In this work, we propose a novel countermeasure based on duplication, which can protect against both SIFA and FTA. The proposal is also lightweight with only a marginally additional cost over simple duplication based countermeasures. Our countermeasure further protects against all known variants of DFA, including Selmke, Heyszl, Sigl’s attack from FDTC 2016. It does not inherently leak side-channel information and is easily adaptable for any symmetric key primitive. The validation of our countermeasure has been done through gate-level fault simulation.
Category / Keywords: secret-key cryptography / Fault Attack, Countermeasures, DFA, SIFA, FTA Original Publication (with major differences): Design, Automation and Test in Europe Conference (DATE) - 2021 Date: received 10 Dec 2020, last revised 13 Dec 2020 Contact author: anubhab001 at e ntu edu sg Available format(s): PDF | BibTeX Citation Version: 20201214:051542 (All versions of this report) Short URL: ia.cr/2020/1542