Paper 2020/1529
Bounds on the nonlinearity of differentially uniform functions by means of their image set size, and on their distance to affine functions
Claude Carlet
Abstract
We revisit and take a closer look at a (not so well known) result of a 2017 paper, showing that the differential uniformity of any vectorial function is bounded from below by an expression depending on the size of its image set. We make explicit the resulting tight lower bound on the image set size of differentially
Metadata
- Available format(s)
-
PDF
- Category
- Secret-key cryptography
- Publication info
- Preprint. MINOR revision.
- Keywords
- differentially uniform functionalmost perfect nonlinear
- Contact author(s)
- claude carlet @ gmail com
- History
- 2021-01-14: revised
- 2020-12-08: received
- See all versions
- Short URL
- https://ia.cr/2020/1529
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2020/1529, author = {Claude Carlet}, title = {Bounds on the nonlinearity of differentially uniform functions by means of their image set size, and on their distance to affine functions}, howpublished = {Cryptology {ePrint} Archive, Paper 2020/1529}, year = {2020}, url = {https://eprint.iacr.org/2020/1529} }