Paper 2020/1166

A Differential and Linear Analysis of the Inversion Mapping in Odd-Characteristic Finite Fields

Jorge Nakahara Jr

Abstract

Substitution boxes (S-boxes) based on the inversion mapping in even-characteristic finite fields are widely used components in the design of cryptographic primitives such as block ciphers (notably the AES cipher). This report focuses on the inversion mapping in finite fields GF(p^n) where p is a (small) odd prime and n is a (small) integer. We compare the differential and linear profiles of S-boxes over odd- and even-characteristic fields, which also motivates the design and analysis of AES variants operating in fields of odd-characteristic. Even for GF(2^n), the study of S-boxes which are APN permutations (odd-valued n)already shows resistance to differential and linear cryptanalysis after three rounds.

Metadata
Available format(s)
PDF
Category
Secret-key cryptography
Publication info
Preprint. MINOR revision.
Keywords
odd-characteristic finite fieldsinversion mappingS-boxAPN permutations
Contact author(s)
jorge_nakahara @ yahoo com br
History
2020-09-25: received
Short URL
https://ia.cr/2020/1166
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2020/1166,
      author = {Jorge Nakahara Jr},
      title = {A Differential and Linear Analysis of the Inversion Mapping in Odd-Characteristic Finite Fields},
      howpublished = {Cryptology {ePrint} Archive, Paper 2020/1166},
      year = {2020},
      url = {https://eprint.iacr.org/2020/1166}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.