Paper 2020/057
On the smoothing parameter and last minimum of random orthogonal lattices
Elena Kirshanova, Huyen Nguyen, Damien Stehlé, and Alexandre Wallet
Abstract
Let $X \in {\mathbb{Z}}^{n \times m}$, with each entry independently and identically distributed from an integer Gaussian distribution. We consider the orthogonal lattice $\Lambda^\perp(X)$ of $X$, i.e., the set of vectors $\mathbf{v} \in {\mathbb{Z}}^m$ such that $X \mathbf{v}= \mathbf{0}$. In this work, we prove probabilistic upper bounds on the smoothing parameter and the $(m-n)$-th minimum of $\Lambda^\perp(X)$. These bounds improve and the techniques build upon prior works of Agrawal, Gentry, Halevi and Sahai [Asiacrypt'13], and of Aggarwal and Regev [Chicago J. Theoret. Comput. Sci.'16].
Metadata
- Available format(s)
- Category
- Foundations
- Publication info
- Published elsewhere. Designs, Codes and Cryptography
- DOI
- 10.1007/s10623-020-00719-w
- Keywords
- random latticeslast minimumsmoothing parameterlattice-based cryptographylattices and convex bodies
- Contact author(s)
-
elenakirshanova @ gmail com
damien stehle @ gmail com
nthuyen math @ gmail com
wallet alexandre @ gmail com - History
- 2020-01-21: received
- Short URL
- https://ia.cr/2020/057
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2020/057, author = {Elena Kirshanova and Huyen Nguyen and Damien Stehlé and Alexandre Wallet}, title = {On the smoothing parameter and last minimum of random orthogonal lattices}, howpublished = {Cryptology {ePrint} Archive, Paper 2020/057}, year = {2020}, doi = {10.1007/s10623-020-00719-w}, url = {https://eprint.iacr.org/2020/057} }