You are looking at a specific version 20200115:092955 of this paper. See the latest version.

Paper 2020/040

A Compact and Scalable Hardware/Software Co-design of SIKE

Pedro Maat C. Massolino and Patrick Longa and Joost Renes and Lejla Batina

Abstract

We present efficient and compact hardware/software co-design implementations of the Supersingular Isogeny Key Encapsulation (SIKE) protocol on field-programmable gate arrays (FPGAs). In order to be better equipped for different post-quantum scenarios, our architectures were designed to feature high-flexibility by covering all the currently available parameter sets and with support for primes up to 1016 bits. In particular, any of the current SIKE parameters equivalent to the post-quantum security of AES-128/192/256 and SHA3-256 can be selected and run on-the-fly. This security scalability property, together with the small footprint and efficiency of our architectures, makes them ideal for embedded applications in a post-quantum world. In addition, the proposed implementations exhibit regular, constant-time execution, which provides protection against timing and simple side-channel attacks. Our results demonstrate that supersingular isogeny-based primitives such as SIDH and SIKE can indeed be deployed for embedded applications featuring competitive performance. For example, our smallest architecture based on a 128-bit MAC unit takes only 3415 slices, 21 BRAMs and 57 DSPs on a Virtex 7 690T and can perform key generation, encapsulation and decapsulation in 14.4, 24.4 and 26.0 milliseconds for SIKEp434 and in 52.3, 86.4 and 93.2 milliseconds for SIKEp751, respectively.

Metadata
Available format(s)
PDF
Category
Implementation
Publication info
Published by the IACR in TCHES 2020
Keywords
Post-quantum cryptographysupersingular isogeniesSIDHSIKEhardwaresoftware co-designFPGAconstant-timeembedded applications
Contact author(s)
P Massolino @ cs ru nl
plonga @ microsoft com
j r renes91 @ gmail com
lejla @ cs ru nl
History
2020-06-25: revised
2020-01-15: received
See all versions
Short URL
https://ia.cr/2020/040
License
Creative Commons Attribution
CC BY
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.