Paper 2019/978

Strength in Numbers: Improving Generalization with Ensembles in Profiled Side-channel Analysis

Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek

Abstract

The adoption of deep neural networks for profiled side-channel attacks provides powerful options for leakage detection and key retrieval of secure products. When training a neural network for side-channel analysis, it is expected that the trained model can implement an approximation function that can detect leaking side-channel samples and, at the same time, be insensible to noisy (or non-leaking) samples. This outlines a generalization situation where the model can identify the main representations learned from the training set in a separate test set. In this paper, we first discuss how output class probabilities represent a strong metric when conducting the side-channel analysis. Further, we observe that these output probabilities are sensitive to small changes, like the selection of specific test traces or weight initialization for a neural network. Next, we discuss the hyper-parameter tuning, where one commonly uses only a single out of dozens of trained models, where each of those models will result in different output probabilities. We show how ensembles of machine learning models based on averaged class probabilities can improve generalization. Our results emphasize that ensembles increase the performance of a profiled side-channel attack and reduce the variance of results stemming from different groups of hyper-parameters, regardless of the selected dataset or leakage model.

Metadata
Available format(s)
PDF
Category
Applications
Publication info
Published by the IACR in TCHES 2020
DOI
10.13154/tches.v2020.i4.337-364
Keywords
Side-Channel AnalysisDeep LearningModel GeneralizationEnsemble Learning
Contact author(s)
guilhermeperin7 @ gmail com
lukchmiel @ gmail com
picek stjepan @ gmail com
History
2020-10-16: last of 3 revisions
2019-08-29: received
See all versions
Short URL
https://ia.cr/2019/978
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2019/978,
      author = {Guilherme Perin and Lukasz Chmielewski and Stjepan Picek},
      title = {Strength in Numbers: Improving Generalization with Ensembles in Profiled Side-channel Analysis},
      howpublished = {Cryptology {ePrint} Archive, Paper 2019/978},
      year = {2019},
      doi = {10.13154/tches.v2020.i4.337-364},
      url = {https://eprint.iacr.org/2019/978}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.