Cryptology ePrint Archive: Report 2019/708

Upper Bounds on the Multiplicative Complexity of Symmetric Boolean Functions

Luís T. A. N. Brandão and Çağdaş Çalık and Meltem Sönmez Turan and René Peralta

Abstract: A special metric of interest about Boolean functions is multiplicative complexity (MC): the minimum number of AND gates sufficient to implement a function with a Boolean circuit over the basis {XOR, AND, NOT}. In this paper we study the MC of symmetric Boolean functions, whose output is invariant upon reordering of the input variables. Based on the Hamming weight method from Muller and Preparata (1975), we introduce new techniques that yield circuits with fewer AND gates than upper bounded by Boyar et al. in 2000 and by Boyar and Peralta in 2008. We generate circuits for all such functions with up to 25 variables. As a special focus, we report concrete upper bounds for the MC of elementary symmetric functions $\Sigma^n_k$ and counting functions $E^n_k$ with up to n = 25 input variables. In particular, this allows us to answer two questions posed in 2008: both the elementary symmetric $\Sigma^8_4$ and the counting $E^8_4$ functions have MC 6. Furthermore, we show upper bounds for the maximum MC in the class of n-variable symmetric Boolean functions, for each n up to 132.

Category / Keywords: symmetric Boolean functions, multiplicative complexity, upper bounds, logic minimization

Original Publication (with minor differences): Cryptography and Communications Discrete Structures, Boolean Functions and Sequences
DOI:
10.1007/s12095-019-00377-3

Date: received 14 Jun 2019

Contact author: luis papers at gmail com, luis brandao@nist gov, cagdas calik@nist gov, meltem turan@nist gov, rene peralta@nist gov

Available format(s): PDF | BibTeX Citation

Version: 20190618:103921 (All versions of this report)

Short URL: ia.cr/2019/708


[ Cryptology ePrint archive ]