Paper 2019/1224

Practical Volume-Based Attacks on Encrypted Databases

Rishabh Poddar, Stephanie Wang, Jianan Lu, and Raluca Ada Popa


Recent years have seen an increased interest towards strong security primitives for encrypted databases (such as oblivious protocols), that hide the access patterns of query execution, and reveal only the volume of results. However, recent work has shown that even volume leakage can enable the reconstruction of entire columns in the database. Yet, existing attacks rely on a set of assumptions that are unrealistic in practice: for example, they (i) require a large number of queries to be issued by the user, or (ii) assume certain distributions on the queries or underlying data (e.g., that the queries are distributed uniformly at random, or that the database does not contain missing values). In this work, we present new attacks for recovering the content of individual user queries, assuming no leakage from the system except the number of results and avoiding the limiting assumptions above. Unlike prior attacks, our attacks require only a single query to be issued by the user for recovering the keyword. Furthermore, our attacks make no assumptions about the distribution of issued queries or the underlying data. Instead, our key insight is to exploit the behavior of real-world applications. We start by surveying 11 applications to identify two key characteristics that can be exploited by attackers -- (i) file injection, and (ii) automatic query replay. We present attacks that leverage these two properties in concert with volume leakage, independent of the details of any encrypted database system. Subsequently, we perform an attack on the real Gmail web client by simulating a server-side adversary. Our attack on Gmail completes within a matter of minutes, demonstrating the feasibility of our techniques. We also present three ancillary attacks for situations when certain mitigation strategies are employed.

Available format(s)
Publication info
Published elsewhere. EuroS&P 2020
Encrypted databasesORAMvolume leakageattacks
Contact author(s)
rishabhp @ eecs berkeley edu
2020-04-17: last of 2 revisions
2019-10-21: received
See all versions
Short URL
Creative Commons Attribution


      author = {Rishabh Poddar and Stephanie Wang and Jianan Lu and Raluca Ada Popa},
      title = {Practical Volume-Based Attacks on Encrypted Databases},
      howpublished = {Cryptology ePrint Archive, Paper 2019/1224},
      year = {2019},
      note = {\url{}},
      url = {}
Note: In order to protect the privacy of readers, does not use cookies or embedded third party content.