**Evolving Ramp Secret Sharing with a Small Gap**

*Amos Beimel and Hussien Othman*

**Abstract: **Evolving secret-sharing schemes, introduced by Komargodski, Naor, and Yogev (TCC 2016b), are secret-sharing schemes in which there is no a-priory upper bound on the number of parties that will participate. The parties arrive one by one and when a party arrives the dealer gives it a share; the dealer cannot update this share when other parties arrive. Motivated by the fact that when the number of parties is known, ramp secret-sharing schemes are more efficient than threshold secret-sharing schemes, we study evolving ramp secret-sharing schemes. Specifically, we study evolving $(b(j),g(j))$-ramp secret-sharing schemes, where $g,b: N \to N$ are non-decreasing functions. In such schemes, any set of parties that for some $j$ contains $g(j)$ parties from the first parties that arrive can reconstruct the secret, and any set such that for every $j$ contains less than $b(j)$ parties from the first parties that arrive cannot learn any information about the secret.

We focus on the case that the gap is small, namely $g(j)-b(j)=j^{\beta}$ for $0<\beta<1$. We show that there is an evolving ramp secret-sharing scheme with gap $t^{\beta}$, in which the share size of the $j$-th party is $\tilde{O}(j^{4-\frac{1}{\log^2 {1/\beta}}})$. Furthermore, we show that our construction results in much better share size for fixed values of $\beta$, i.e., there is an evolving ramp secret-sharing scheme with gap $\sqrt{t}$, in which the share size of the $j$-th party is $\tilde{O}(j)$. Our construction should be compared to the best known evolving $g(j)$-threshold secret-sharing schemes (i.e., when $b(j)=g(j)-1$) in which the share size of the $j$-th party is $\tilde{O}(j^4)$. Thus, our construction offers a significant improvement for every constant $\beta$, showing that allowing a gap between the sizes of the authorized and unauthorized sets can reduce the share size.

In addition, we present an evolving $(k/2,k)$-ramp secret-sharing scheme for a constant $k$ (which can be very big), where any set of parties of size at least $k$ can reconstruct the secret and any set of parties of size at most $k/2$ cannot learn any information about the secret. The share size of the $j$-th party in our construction is $O(\log k\log j)$. This is an improvement over the best known evolving $k$-threshold secret-sharing schemes in which the share size of the $j$-th party is $O(k\log j)$.

**Category / Keywords: **cryptographic protocols / secret sharing

**Original Publication**** (in the same form): **IACR-EUROCRYPT-2020

**Date: **received 30 Sep 2019, last revised 21 Feb 2020

**Contact author: **amos beimel at gmail com, hussien othman at gmail com

**Available format(s): **PDF | BibTeX Citation

**Version: **20200221:184808 (All versions of this report)

**Short URL: **ia.cr/2019/1124

[ Cryptology ePrint archive ]